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Summary. An analytical solution method is presented for the problem of 
radiative transfer in the presence of a magnetic field and of absorbing lines. 

Previously available solution methods are also presented and tested, and the 
usefulness and limitations of the different methods are discussed. 

1 Introduction 

The solution to the problem of radiative transfer in the presence of a magnetic field and of 
absorbing lines (giving rise to Zeeman-split lines) requires the treatment of four inter- 
dependent differential equations for the four Stokes parameters. This problem is important 
for both solar physics and astrophysics. 

A number of solution methods have been proposed. Unno (1956) and Stepanov (1958) 
present analytical solutions for the special case in which the opacities are constant and the 
source function is linear in optical depth; however, other approaches must be sought for 
realistic atmospheres. Shipman (1971) offers a simple approximate method for calculating 
the flux and circular polarization. Beckers (1969) gives a full numerical solution based on 
the Runge—Kutta algorithm, and Hardorp, Shore & Wittmann (1976) present an approxi- 
mate numerical solution based on a perturbation method. 

The object of this paper is two-fold. First, we present a new method for integrating the 
radiative transfer equations using an explicit analytical solution. This method has been used 
successfully in the restricted case of three Stokes parameters for computing the theoretical 
spectra of magnetic white dwarfs (Martin & Wickramasinghe 1979a; Wickramasinghe & 
Martin 1979). Secondly , we present a comparison of this method with the above solution 

methods currently in use to solve the radiative transfer problem for polarized light, in terms 
of their accuracy , computational speed and convenience . 

2 An analytical solution 

We first present a solution to the radiative transfer problem for the restricted set of three 
Stokes parameters /, Q and K, since this restricted set is sufficient for many astrophysical 
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884 B. Martin andD. T. Wickramasinghe 

problems and because the solution is considerably simpler and demonstrates the method of 
solution. Afterwards the solution for the full set of four Stokes parameters will be presented. 

The radiative transfer equations for the restricted set of three Stokes parameters /, Q and 
Vare (Unno 1956) 

dl 
M — =!?/(/-5) + t?ßß + r?FF, (1) 

M—= h<2 (/-#) +i?/ß, (2) 

dV 
ß — = VvQ-B) + Viv, (3) 

where 

h/ = Virip sin2 \p + VaÍ-Qi + 7?r)(l + cos2 \p), (4) 

Vq = [V2Vp - ^(Vi + Vr)] sin2 \¡j, (5) 

Vv = y^iVr - Vi) COS \p. (6) 

= cos 6, where 0 is the angle between the propagation direction and the normal to the 
surface of the star, \jj is the angle between the propagation direction and the direction of 
the local magnetic field, B is the local source function, and r?p, r?/ and r}r are the ratios of 
the total absorption coefficient of the three shifted Zeeman components to the (un- 
polarized) continuum absorption coefficient. (The ‘total absorption coefficient’ includes 
both continuous and line absorption, and hence allows for polarization in the continuum. 
If the continuum is not polarized, then t?p, t?/ and r¡r can be taken to correspond to the ratio 
of line-to-continuum opacities, and r?/ in our formulation is replaced by 1 + as is done in 
most presentations of the radiative transfer equations.) The optical depth r scale refers to 
unpolarized light in the continuum, i.e. dr = —Kp dz where Kp is the absorption coefficient 
for p-electrons in the continuum. 

To solve the equations, we take a series of optical depths t0 = 0, ru r2,..., rmax. At each 
optical depth 77 there is an Unno solution for the radiation emerging from the sphere whose 
physical radius corresponds to that optical depth: 

(7) 

(8) 

(9) 

where Æ, ß = B ldB/dr, r¡j, t¡q and r¡v are evaluated at r,-. For the initial solution at rmax 

we adopt the expressions (7)-(9) evaluated at rmax. 

Given a solution /„, Qn and Vn at any optical depth r„, we calculate the solution at the 
next lowest depth rm by assuming that in the region rm < r < rni 

3 
I = Ia+IbT+ X ICi exp 0/x), (10) 

1 = 1 

= B + 
ßmi 

„2 „2 „2 
Vi - Vq - Vv )• 

Vi — Vq — Vv 

ßßVv 
Vu~—B "2 2 2 > 

Vi-Vq- Vv 
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Radiative transfer in magnetic atmospheres 

3 
Ô = öa + ßö r + X Qci exp (ff/T), 

1 = 1 

885 

(11) 

3 
V=Va + VbT+ I Fc.expKr), 

i=l 
(12) 

B^Ba+yr. (13) 

Substituting equations (10)—(13) into (1)—(3) and equating constant terms and terms in r 
and exp (^t), values for the unknown parameters in equations (10)—(13) can be obtained. 
The solution at rm is 

Im-Iu + + (14) 

Öm =ßt/+4l+>?£42, (I5) 

Vm^Vu-riQqJnv + rivqi, (16) 

where Ijj,Qu an(l Vu are given by equations (7)—(9) evaluated at rm, and 

h = 1/2ß1 + i2-7Mi)exp(-ö1Ar), (17) 

/2 = 1/2(íi-Í2 -7/^2)exp(-úr2Ar), (18) 

Qx = rivirfg + - Vq Kt) exp (- V/Ar/p), (19) 

q2 = (ii-h)/(VQ + Vv)1/2, (20) 

~ fn ~ Bn* (21) 

¿2 = (VqQh + Vn)l(r¡2
Q + r?^)172, (22) 

äi = (Vi + (Vq + Vv)i/2)lß, (23) 

^2 = (r?/ - (Vq + Wv)í/2)h¿, (24) 

=: (^^(^ + i?z) sin2 i// + Vin cos2 ^)/(«i/í2) , (25) 

A?* — th — Tm. (26) 

To obtain maximum accuracy, the parameters 7, r?/, 97^ and 97^ in the above expressions 
should be evaluated at %(r„ + rm). An alternative using values only at the 77 is to set 7 = 
(Bm - 5„)/(rm — Tn) and take the values of 97/, r)Q and 97^ as the average of their values at 
Tm and rn. The expressions (14)—(26) are given in a form suitable for automatic 
computation. In some special cases the round-off error in calculating a2 by equation (24) 
is severe, a problem which the expression (25) avoids. Note that if the initial solution at 
rmax Is an Unno solution as specified by equations (7) to (9), then q x will always vanish. 

The assumption made in deriving the solution (14)—(26) is that the source function B 
is linear in r between rm and r„, and that 97/, tiq and 97^ are constant in the same region. 
If a sufficient number of r values are adopted, this assumption should be closely satisfied. 
We find that with constant opacities and a grey atmosphere, that three points are sufficient 
to give accuracy within 1 per cent; with a more realistic temperature structure, six points 

are sufficient to give 1 per cent accuracy. With non-constant opacities, more integration 
points usually would be required for a similar accuracy. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

9M
N

RA
S.

18
9.
 .8

83
M

 

886 B. Martin and D. T. Wickramasinghe 

For the full set of four Stokes parameters I, Q, U and Vthe radiative transfer equations 
may be written (Hardorp et al 1976) 

¡x — = 7?/(/-fi) + T?ßß + r?KK, (27) 
dr 

tiq(I-B) + tiiQ-prU, 

dU 
M — = PÄß + í?/Í7 - Pw 

dr 

(28) 

(29) 

dV 
P— = rtv(I - B) + pwU + rijV. 
dr 

The pair (y) of solutions must be multiplied by 

(30) 

/cos 20 — sin 20 ' 

\sin 20 cos 20 

where 0 is the azimuth with respect to an arbitrary x-axis at right angles to the line of sight. 
Hardorp et al. (1976) also note that if dip/dr * 0 then the solution to equations (27)-(30) 

is obtained by replacing pR by pR - 2p(d(p/dT). The terms pR and p jy introduce anomalous 
dispersion into the system. 

The Unno solution for equations (27)—(30) may be written 

Iu=B + 
Vi — Vv/Viw — Vqp/Vir 

(31) 

Wm 
(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Vqp - Vq + PVv (38) 

This Unno solution (31)-(38) is again adopted as the initial solution at Tmax. Given a 
solution at r„, solutions at rm are calculated using expressions like equations (10)-(12) 

but with four exponential terms. Substituting the expressions into equations (27)-(30) 
results in four eigenvalues a,-, two real and two complex. The solution at Tm may be written 

=7r/ + «i(x1-x2)+z1/21, (39) 

Qm=Qu +U2(Xi+X2)+Z2h2, (40) 

Um=
:Uu+u3(xl-x2)+z3hu (41) 

Vm = Vu+x1+x2 + h2, (42) 

\ Viw VlR / 

Uu = {PwVu - PrQu)Ivi, 

where 

Viw =z Wi+ PwlWi- 

P - PrPwKwiWiw)’ 

Vir =Vi + PrIvi-P2Viw, 
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Radiative transfer in magnetic atmospheres 887 

where 7^, Qu, Uu and Vu are given by equations (31)—(34) evaluated at rm, and 

/?! = [*3 sin (yAr/iJi) + jc4 cos (yAr/n)] exp (- tj/At/m), (43) 

h2 = [x3 cos (yAr/ix) - x4 sin (jAt/ju)] exp (- ij/At/m), (44) 

x4
:=(u3g1-u1g3)/(u3z1-u1Z3), (45) 

x3 = (gi-U2g4)l(z3-u1), (46) 

x3 = 1Á{g4-g3lu3- x3 + z3xju3) exp (-(r?/ - x)At/m), (47) 

*i = Vi(g4+g3lu3 -x3- z3x4lu3) exp (- (t?/ + x)AtIh), (48) 

gi=In-(Iu + yAT), (49) 

gi-Qn “ Qu* 

g3=Un-Uu, (51) 

g^Vn-Vu, (52) 

where again in equations (49)-(52), /¡y, Qv, Uu and Vu are given by equations (31)-(34) 
evaluated at rm, and 

Z3 = (PW- PRZ2)ly, (53) 

21 = -{riv + ,PQz2)ly, (54) 

22 = (VqTIv + PrPw)/(-/ + Pr- Vq), (55) 

U3 = (-Pw+PrU2)Ix, (56) 

Ui = (vv + r}Qt*2)lx, (57) 

U2 = (VQVv+PRPw)/(x2 + PR-rÍQ), (58) 

y = (b +q)V2, (59) 

x = (-b +q)V2, (60) 

q = (b2 + c)V2, (61) 

b = Vi^Pr + Pw — Vq — viv)> (62) 

c = (PwVq+PrVv)2- (63) 

The solution (39)—(63) is given in a form suitable for automatic computation (calculating 

in reverse order). Note that if there is no anomalous dispersion (pR = Pw = Q) then y = 0 
and the solution breaks down: see equations (53) and (54). The solution (14)—(26) should 
be used in this case. 

3 Numerical solutions 

Besides the analytical solution presented for the restricted set of three Stokes parameters 
by Unno (1956), there are at least three proposed approaches for solving the radiative 
transfer problem in a magnetic field, given by Shipman (1971), Beckers (1969) and Hardorp 

et al. (1976). Tests of these methods will be presented in Section 4 after the brief 
description here. 
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888 B. Martin and D. T. Wickramasinghe 

The analytical approach of Unno can be applied to atmospheres in which the source 
function B is non-linear in r by obtaining an approximate linear source function (Unsold 
1955, Section 41) which for our purposes may be written 

£=£o(l+j3r), (64) 

0 = 0/(1 -20/3), (65) 

0 = (3/16)a/[l-exp(-a)], (66) 

oc = hvlkTe. (67) 

The solution is then obtained using equations (7)-(9) or (31)-(34) where the opacities 
are evaluated at r*=2/3. This approach can only be expected to apply successfully to 

atmospheres such as a grey atmosphere which are similar to the Unno atmosphere. 
Shipman’s method is based on the assumption that the effect on flux and circular 

polarization due to increased absorption in a single Zeeman component is proportional to 
the change in flux in a single component system with suitably altered opacity. Here we 

apply the method to calculate intensity only, for the sake of comparison with the other 
methods. The single component equation for the intensity is 

dl 
M—= T?(/-^). (68) 

If Ic is the surface intensity of the solution to equation (68) with continuum absorption 
only, and Ir is the surface intensity of the solution to equation (68) in which t? is replaced 
by rjn the opacity of the single Zeeman component which is additionally absorbing (here 

arbitrarily assumed to be the component which absorbs right-handed circularly polarized 
light; rjf. also includes the r-component of the continuum, in agreement with the notation 
adopted previously), then the Shipman solution is 

Iq — V^ifr ■*" ^)j (69) 

F0 = (4.-4)/(/r+/c). (70) 

The method makes no prediction for Q0 or U0. Much more sophisticated looking formulae 
can be derived when taking into account averaging over the stellar disc and when in- 
corporating a particular T-t relationship (see, e.g. Landstreet & Angel 1975; Brown et al 
1977), but equations (69) and (70) represent the essence of the method. 

Beckers’ approach (see also the corrections and supplementary work of Wittmann 1972, 
1974) is simply based on a Runge—Kutta approximation to the derivatives in equations 
(l)-(3) or (27)-(30), and step-wise numerical solution outwards beginning at an optical 
depth well within the atmosphere. 

Hardorp et al\ approach is based on an orthogonal transformation of the equations 
(27)—(30), and a perturbation-type solution of the resulting equations. Up to second order 
their solution may be written 

/=2-1/2(/2+/4), (71) 

ô = 0?e + îîk)'1/2(2“1/2i?0(/2 - y4) +r\vJl), (72) 

u = Ji, (73) 

F=(r?^+rj2
Kr

1/2(2'1/2r?K(/2-/4)-i7e71), (74) 
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Radiative transfer in magnetic atmospheres 

/4 = /i0>+/42), 

/(0) = 2 1/2 exp (^x) J a\B exp {-Ax) dr , 

/too 
= 2~V2 exp (A2) a2B exp(—A2)dT', 

^4!= Í aldT 
Jo 

A2= Í a2dr , 
Je 

where ax and a2 are given by equations (23) and (25), and 

/!(1) = exp (A 3) J Z)(40) - 40)) exp ( -A 3) dr'Iß, 

= - exp 043) J R2(JÍ0) -/40)) exp (-A3)dr'Iß, 

Vi dr', 

889 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

/1
(2) = exp (A3)j exp(-A3)dr'lß, (86) 

42) = - exp (44,) f (0/,(1) - R24
l)) exp (- A,) dr’Iß, (87) 

JT 

42) = — exp 043) Í exp (—44 3)dr'/ß, (88) 
J j 

J¡2) = exp 042) ^(DJ^ - R2/3
l)) exp (-A2) dr'/ß, (89) 

D = - 2~1/2ß(r]Q + T&)"1 |r?0 - Vv (90) 

Rl = (nQ+Vvy1/2(PRVv+PwVQ), (91) 

R2 = 2~V2(j]2q + iiyYV2(PrVq - PwVv)- (92) 

The solution (72)-(73) for Q and Umust be rotated as indicated previously for any solution 
to the radiative transfer equations as formulated in equations (27)~(30)i In equations (79), 

(80), (91) and (92) we have incorporated slight corrections in Hardorp et aVs formulae as 
written. In each of the integrals (79)-(89) the factors composing the integrand are functions 
of T although this is not explicitly noted, and each of the expressions on the left hand side 
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890 B. Martin and D. T. Wickramasinghe 

of the equals signs are functions of r. Hardorp et al note that Z) = 0 unless different types of 
Zeeman components mix (or in the case of r-dependent continuum polarization, which 

amounts to the same thing). 

4 Tests of the methods 

In testing the methods, 31 different r points were used. This large number of r points was 

adopted so that the results would depend solely on the solution method and not on approxi- 
mations involved in quadrature; as in the case of the analytical solution, a much smaller 
number of points would be sufficient for practical purposes. Three different atmospheric 

structures were used: (a) an Unno source function, B{r) =1+0.2 r; (b) a grey atmosphere 
temperature structure 7= 12000(3 r/4 + Vz)1/4, \ = 5000Â; and (c) a ‘real’ atmosphere 
adopted from Wickramasinghe (1972) with TQ = 12 000 K and X = 5000 Â (see Table 1 for 
the T-t relationship in the real atmosphere). 

Table 1. Temperature T as a function of 
optical depth r for a model atmosphere 
from Wickramasinghe (1972), Te = 
12 000 K, \ = 5000 A. 

T T 

0 8625 

.001 8676 

.002 8727 

.004 8786 

.006 8830 

.008 8867 

.01 8900 

.015 8963 

.02 9027 

.03 9131 

.04 9222 

.07 9457 

.1 9669 

.15 9951 

.2 10233 

.3 10693 

.4 11086 

.6 11771 

.8 12330 

1 12757 

T T 

1.2 13191 

1.6 13920 

2 14464 

3 15452 

4 16169 

5 16750 

6 17179 

10 18686 

14 19626 

22 21186 

30 22425 

Some details of the computational procedure are in order. For Shipman’s method, the 
intensities Ir and Ic were obtained using the analytical solution with all r?’s equal. This is 
costly in computational time but guarantees that the method comparison does not involve 

differences in quadrature techniques. For the Runge-Kutta method, the initial optical depth 
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Radiative transfer in magnetic atmospheres 891 

was taken as r = 5, and steps of Ar = 10“3 were used. For Hardorp et ß/.’s method, integrals 
of the form 

/»OO 
j 0!^ exp (-^4i) dr' (93) 

were transformed to the form 

Í, 

expC-^) 
B{r)dx, 

where f is related to x by 

Ai = \TaxdT" = - In (x). 

(94) 

(95) 

The integrals of form (94) were then evaluated by utilizing 3 l,x-coordinates evenly spaced 
in the interval x = (0, exp (—^i)). This in effect represents a quadrature formula in which 
the optical depths are the values r^x) and the weights are all unity. In both the Runge— 
Kutta and Hardorp et a/.’s methods the values of i?, r?j, tiq and riv were found by inter- 
polating linearly in the tables giving these parameters at the 31 fixed optical depths. 

For the tests, a variety of functional dependences of rip, r?/ and r(r on r were used. In 

addition, different tests were made in which r\r was multiplied by a factor 1 + 10^, 
k = —2, — 1,...,6, to simulate the effect of lines of varying strength. Some representative 
results are presented in Tables 2—6. Results for the real atmosphere case are emphasized 

Table 2. Comparison of solutions to the radiative transfer problem in a magnetic 
Unno atmosphere with source function B = 1 + 0.2r, using the analytical method, 
the Unno solution, the method of Shipman (1971), the Runge-Kutta method 
and the method of Hardorp et al. (1976), for several sets of constant opacities, 
with m = 0.8, cos - 0.7, cos 20 = 0.6 and r\p- r\i = 

Analytical Unno Shipman Runge-Kutta Hardorp et al. 

PR=PW=0 

nr=l.l 

n =2 'r 

r 
100001 

1.16000 

1.15445 

.00190 

-.00521 

1.1258 5 

.01169 

-.03209 

1.08000 

.02738 

-.07517 

Pr=1.5; pw=0.75 

n =2 r I0 1.12276 

.00855 

U0 -.00836 

V0 -.02482 

1.16000 

1.15445 

.00190 

-.00521 

1.12585 

.01169 

-.03209 

1.08000 

.02738 

-.07517 

1.12276 

.00855 

-.00836 

-.02482 

1.16000 

1.15273 

-.00631 

1.12000 

-.03571 

1.08000 

-.07407 

1.12000 

1.15982 

1.15427 

.00190 

-.00521 

1.12566 

.01169 

-.03209 

1.12256 

.00855 

-.00836 

1.15827 

1.15279 

.00188 

-.00516 

1.12449 

.01156 

-.03174 

1.07914 

.02709 

-.07436 

1.11665 

.01083 

-.03552 

-.03571 -.02482 -.01337 
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892 B. Martin and D. T. Wickramasinghe 

Table 3. Comparison of solutions to the radiative transfer problem in a magnetic 
grey atmosphere, Te = 12 000 K, using the analytical method, an Unno solution 
with B = 1 + 0.738r, the method of Shipman (1971), the Runge-Kutta method 
and the method of Hardorp et al. (1976), for several sets of constant opacities, 
with M = 0.8, cos i// = 0.7, cos 20 = 0.6 and r\p -r\i= \ . 

PR PW ° 

\=1 

nr=i.i 

nr=2 

r 
100001 

0 

Analytical 

1.66320 

1.64481 

.00629 

-.01728 

1.54196 

.04150 

-.11391 

1.33161 

.11350 

-.31157 

P-D 1 • 5 ; PT.T— 0.75 W 

\=2 1.53375 

.03464 

-.02476 

-.09212 

Unno 

1.59032 

1.56985 

.00700 

-.01923 

1.46430 

.04313 

-.11840 

1.29516 

.10103 

-.27733 

1.45292 

.03156 

-.03086 

-.09159 

Shipman Runge-Kutta Hardorp et al. 

1.66320 

1.63900 

-.01477 

1.51895 

-.09497 

1.33161 

-.24902 

1.51895 

.09497 

1.66270 

1.64428 

.00630 

-.01730 

1.54135 

.04153 

-.11401 

1.53306 

.03466 

-.02477 

-.09218 

1.66000 

1.64174 

.00625 

-.01716 

1.53920 

.04135 

-.11350 

1.33001 

.11295 

-.31006 

1.52057 

.04438 

-.09373 

-.06515 

Table 4. Comparison of solutions to the radiative transfer problem in a real atmo- 
sphere from Wickramasinghe (1972), Te = 12 000 K, in a magnetic field, using the 
analytical method, an Unno solution with B = 1 + 0.738r, the method of Shipman 
(1971), the Range—Kutta method and the method of Hardorp et al. (1976), for 
several sets of constant opacities, with m = 0.8, cos 0 = 0.7, cos 20 = 0.6 and 
T?p = 17/ = 1. 

pw=° 

nr=i 

nr=i.l 

nr=2 

100001 

Analytical 

2.64677 

2.61165 

.01202 

-.03299 

2.40377 

.08317 

-.22832 

1.82349 

.28179 

-.77354 

Unno 

1.59032 

1.56985 

.00700 

-.01923 

1.46430 

.04313 

-.11840 

1.29516 

.10103 

-.27733 

Shipman Runge-Kutta Hardorp et al. 

2.64677 

2.60043 

-.01782 

2.35422 

-.12427 

1.82347 

-.45150 

2.64584 

2.61067 

.01204 

-.03305 

2.40256 

.08327 

-.22859 

2.64333 

2.60840 

.01196 

-.03283 

2.40062 

. 08308 

-.22805 

1.82178 

.28120 

-.77193 

Pr=1-5; Pw=0-75 

nr=2 2.39083 

.07448 

-.04111 

-.19042 

1.45292 

.03156 

-.03086 

-.09159 

2.35422 

-.12427 

2.38942 

.07454 

-.04114 

-.19063 

2.37374 

.09424 

-.14524 

-.15209 
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Radiative transfer in magnetic atmospheres 

Table 5. Comparison of solutions to the radiative transfer problem in a real 
atmosphere from Wickramasinghe (1972), 7’e = 12 000K, in a magnetic field, 
using the analytical method, an Unno solution, the method of Shipman (1971), 
the Runge-Kutta method and the method of Hardorp et al. (1976), for several 
sets of r-dependent opacities, with ju = 0.8, cos ^ = 0.7, cos 20 = 0.6 and 
r\p-'r\l~r\ with 17 = 0.2 + T. 

Analytical Unno Shipman Runge-Kutta Hardorp et al 

PR=PW=0 

n =i.in I, 

2.97477 

2.94920 

.00875 

-.02403 

2.78625 

.06453 

-.17713 

1.98794 

.33778 

-.92722 

pr=1-5; pw=0*75 

nr=2n I0 2.77945 

nr=2n 

nr= 

looooin 

.05809 

U 0 -. 06537 

VQ -.13541 

1.68114 

1.65752 

.00808 

-.02219 

1.53574 

.04977 

-.13662 

1.34057 

.11657 

-.31999 

1.52119 

.03115 

-.03927 

-.10234 

2.97477 2.98068 

2.94092 2.95500 

.00879 

-.01151 -.02412 

2.74365 

-.08424 

1.98779 

-.49652 

2.74365 

-.08424 

2.79155 

.06473 

-.17770 

2.78459 

.05787 

-.06609 

-.13551 

2.97358 

2.94799 

.00876 

-.02405 

2.78500 

.06455 

-.17719 

1.98734 

.33757 

-.92667 

2.77536 

.08945 

-.15323 

-.10959 

893 

since this case provides the most severe test. In Table 7 a comparison of computational 

execution times is presented. 
It will be convenient to comment on these results and on the general convenience of the 

methods at the same time. First, the Unno solution is only satisfactory for giving a rough 
approximation to an accurate solution in grey-type atmospheres. For our real atmosphere 
the Unno solution is quite inaccurate, not surprisingly since it depends only on the effective 
temperature TQ and the opacities at r* = 2/3. To be fair, the approximation to an Unno 
atmosphere presented by Unsold (1955) was designed originally for grey-type atmospheres; 
we have applied it to the real atmosphere case for the sake of completeness. 

Second, Shipman’s method usually gives a reasonable result for the intensity but for 
circular polarization it cannot be relied upon. For example, in the case of a real atmosphere 
and a weak single component line with r-independent opacities (Table 4), Shipman’s method 
underestimates the circular polarization by roughly 50 per cent. Analytical extensions of this 
method which are currently in use for the computation of continuum polarization in 
magnetic white dwarfs (Angel 1977; Brown et al 1977) thus may lead to large errors even if 
a reaHstic atmospheric structure is adopted. Two of the extensions of Shipman’s method 
are analysed in Martin & Wickramasinghe (1979b). The poor results achieved using 

Shipman’s method are not surprising, remembering that the method is not based on rigorous 
mathematical analysis of the problem. The poor values for circular polarization seem to 
come about from lack of treatment of linear polarization: the Shipman values for V0 seem to 
be some sort of non-linear average of the actual 00, f/0 and VQ values. 
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Table 6. Comparison of solutions to the radiative transfer problem in a real 
atmosphere from Wickramasinghe (1972), TQ = 12 000 K, in a magnetic field, 
using the analytical method, an Unno solution, the method of Shipman (1971), 
the Runge-Kutta method and the method of Hardorp et al (1976), for several 
sets of r-dependent opacities, with m:=0.8, cos \//= 0.7, cos 20 = 0.6 and 
i?/ = 1, = 1 + T. 

Analytical Unno Shipman Runge-Kutta Hardorp et al 

PR=PW
=0 

n^1 

nr=i.i 

n =2 r 

'r 
100001 

2.55216 

-.09461 

0 

2.52072 

-.07868 

-.02684 

2.32773 

.01701 

-.19254 

1.75273 

.25757 

-.70706 

Pr=1.5; pw=0.75 

nr=2 Iq 2.32713 

Qq .03618 

UQ -.02393 

VQ -.18522 

1.51543 

-.07489 

0 

1.49784 

-.06485 

-.01443 

1.40380 

-.01113 

-.09162 

1.24032 

.08226 

-.22580 

1.40244 

-.00332 

-.03010 

-.08382 

2.55216 2.55208 2.54935 

-.09376 -.09402 

0 0 0 

2.55313 2.52056 2.51787 

-.07783 -.14350 

.00038 -.02692 -.01913 

2.30691 2.32724 2.32514 

.01778 .01428 

-.10631 -.19306 -.19307 

1.77616 - 1.75139 

.25711 

-.43690 - -.70580 

2.30691 2.32646 2.32262 

.03671 .02524 

-.02388 -.04434 

-.10631 -.18553 -.17855 

Table 7. Approximate computer execution time in seconds on a Univac 
1110 for determining solutions to the radiative transfer problem in a 
magnetic field for 27 different temperature structure and opacity sets, 
using the analytical method, an Unno solution, the method of Shipman 
(1971), the Runge-Kutta method and the method of Hardorp et al 
(1976). 

Time 

Method 
3 Stokes parameters 
(single precision 
arithmetic) 

4 Stokes parameters 
(double precision 
arithmetic) 

Analytical 0.22 0.61 

Unno 0.05 

Shipman 0.21 

Runge-Kutta 47.6 

Hardorp et al. 17.6 

0.08 

56.2 

22.0 

Third, the Runge-Kutta approach offers an accurate solution for all test cases, but is not 
useful in the case of deep lines because of the excessive computational time required. 

(Obviously, suitably small r step sizes could have been used to obtain solutions for rir> 103 

— but at the cost of increasing computation time by a corresponding factor and also at the 
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cost of increased round-off error.) Therefore, this method can be recommended only for 
weak lines or when the number of integrations required is quite small. 

Fourth is the method of Hardorp et al It is fairly expensive with computational time 
compared to the analytical solution method, but it is unlike the Runge—Kutta approach in 

that no increase in computation time is required for deeper lines. In many cases Pr- Pw~ 
Z) = 0 and the zero order term gives an exact solution. When Pi? = ppv = 0 but D ^ 0 the 
inclusion of up to second order terms appears to give excellent accuracy. However, the 
method seems inadequate on some special cases of r-dependent 77’s and in the case of large 
values of pR and p^. We have found that when t¡q and r¡v change sign at some optical 
depth — even when D = 0 — Hardorp et al \ method gives incorrect results, as seen in Table 
6. (We have not been able to discover the precise theoretical reason for the breakdown of the 
method in this special case.) Also note that certain r?—r relations, such as 77^, = 1 + r1/2, 

77/ = 1, T?,. = 1 + T, give rise to a singularity in D at r = 0, though this may not give problems 
in a given numerical solution. Finally, when pR and pw are sizable as in the final case in 

Tables 2—6, the perturbation method does not converge quickly enough to give satisfactory 
results. 

5 Conclusion 

We have demonstrated an explicit analytical solution to the radiative transfer problem in 
Zeeman-split lines. Also we have compared the accuracy, computational speed and con- 
venience of several other available solution methods on several test problems. 

For the problem as tested, we have no hesitation in recommending the analytical solution 

as presented here on all three criteria. The method is particularly suitable for dealing with 
radiative transfer in magnetic white dwarfs where the continuum is polarized and strong 

lines are involved. Results obtained by using this method for computing cyclotron 
absorption and hydrogen Une absorption in magnetic white dwarfs have been discussed by 
Martin & Wickramasinghe (1979a) and Wickramasinghe & Martin (1979). We would 
recommend though that a check be made on the correct programming of the solution by 
comparing results with those presented here, or by comparing them with a Runge—Kutta 
solution. 
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