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A straightforward method for calculating residence times from properties of a medium
is presented. The method is used to calculate some representative stratospheric residence

times.

Consider a region of space containing a system
of particles in motion, such as part of the
atmosphere. It is often useful to know the
average time a particle at a given place takes
to move to a certain other place. If this other
place is everywhere exterior to the region, we
may speak of this average time as the residence
time against exit from the system. In this
paper, we show how such residence times may
be derived from properties of the medium, such
as winds and diffusion rates, and illustrate the
technique by calculating some stratospheric
residence times.

Basic THEORY

To begin, let us look closely at how likely
a particle is to move from one part of the
region to another. Divide the region of space
under consideration into a set of NV boxes, labeled
i = 1, --+ , N, such that every particle is
contained in some box. Furthermore, divide the
time dimension into a number of equal intervals
of duration . In priociple these boxes and =
can be made arbitrarily small.

Let Ay, be the probability that a particle in
the ith box moves to the jth box and B, be
the probability that the particle moves out
of the set of boxes during any time interval
7. The A, and B, will depend, for example, on
winds, diffusion, and chemical processes; B,
represents removal of a particle in box 7 from
the region either by simple movement, rainout,
absorption on the surface of the earth, chemical
destruction, or the like.

By conservation of particles during a time
interval,

N
Bi+ 2 A;=1 i=1,---,N (1
f=1
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Let, n, be the average number of time intervals
before a particle in the ith box exits from the
region, including the interval when the exit
takes place. A relation between the n, may be
written using the transition probabilities:

n;=B; 4+ X Ailn; + 1) 2

i=1
., N
Physically, this means that for a particle

in a given box 7 the average number of time
intervals for removal from the system is the

-sum of the probabilities of moving to each box j

times the average number of time intervals for
removal from that box plus one. The one
represents the interval needed for movement
to the box j. If the n, are written as a column
vector and the A4, as a matrix, then by means
of (1) the solution of (2) is

n=(1-A)'T (3)

where 1 is the unit matrix and U is a column
vector with every element equal to unity. Hence,
given the transition probabilities A for a time
interval 7, the average time for removal from
the region of a particle beginning in any box 1,
n,r, may be calculated by using (3). These times
are referred to as the residence times of the
system.

It is important to note that the solution (3)
holds only if the probabilities A are constant
in time. If A varies in time, the solution will
be accurate to the extent that the time for change
in A is large compared to the times nr.

The usefulness of the concept of residence
time is well known. For example, the total
equilibrium mass in a region may be simply
calculated if the residence time is known
throughout the region. If each box 7 has a
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constant source S; (mass added in a time
interval), in equilibrium the region contains a
total mass

N
> niS; (4)

i=1
The term exchange is often used in the
same sense as residence time. However, it
sometimes refers to a particular exit from the
region, where more than one exit exists [e.g.,
Pressman and Warneck, 1970]. One particular
case is the exchange time for transfer between
the northern and southern stratospheres, or
the time for interhemispheric mixing; in such
a case, transfer to the troposphere may also
occur. The neat solution given in (3) for
residence times applies only when all sinks are
included. When this is not done, there is no
simple way of getting transfer times. (See

Appendix 1 for details.)

TRANSITION PROBABILITIES

The matrix of box transition probabilities A
is derived from the properties of the system that
cause movement of a particular species from
one part to another. For the atmosphere such
mechanisms are either bulk motions, as from
mean winds and gravity, or mixing, as from
molecular and eddy diffusion.

The transition probability A,; equals the frac-
tion of the mass in box 7 that moves to box j
in the time 7. The mass transfer equation may
be written

N

m;[n + 1] = Z mi[n}A; + 8; (5)

i=1

j=1,---,N

where m,[n] is the mass in box j at the nth
time interval and S, is the mass introduced
into box j in a time interval. For any particular
system the mass continuity equation may be
reduced to some linear numerical form involving
masses in boxes; comparison with (5) then
determines the 4,,.

The easiest way to get a useful but simple
expression for Ay, is to take a small interval r
and assume that the mass in box i does not
change significantly during this time. Then
physically a particle can only move to a box
j that is adjacent to box i In the absence of
diffusion, 4., is approximately given by the
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fraction of the volume of box i that moves into
box j:

4, = e ©
o;; is the surface area common to boxes 7 and j,
V., is the volume of box 7, and {(v-n) is the com-
ponent of velocity of the particles perpendicular
to the surface o,; averaged over that surface
and over the time interval 7. To include contri-
butions such as diffusion, (v-n) may be replaced
by a similar but more comprehensive term. The
most drastic assumption used to derive (6) is
that the mass in box 7 is uniformly distributed
at any time. This gives rise to the denominator
V. A more detailed analysis of mass distribution
makes determination of A excessively com-
plicated. Accuracy is more easily increased by
increasing the number of boxes in the region,
and thus the assumption of uniformly distributed
masses is made more valid. The size of 7 can be
chosen arbitrarily, provided every A;; is non-
negative and large enough to avoid numerical
difficulties.

SaMPLE CALCULATION

The method outlined above has been used to
determine a set of representative stratospheric
residence times against exit into the troposphere.
A grid was assigned in the two dimensions of
latitude and altitude (Figure 1). The boxes are
formed by sweeping this grid around the earth
longitudinally along the lines of latitude.

Solid lines represent impenetrable barriers,
whereas boxes with surfaces generated by dotted
lines contain sinks (i.e., mass flow into the
troposphere). The transition probabilities were
obtained by using the mean winds and eddy
diffusion coefficients derived by Reed and German
[1965], interpolated in space to give values at
the box faces. (Since Reed and German’s data
were derived from winds and heat flux data,
they may not be appropriate for particulate mat-
ter often traced in bomb blast studies. See also
Gudiksen et al. [1968].) The matrix A was that
proposed by Bassett et al. [1973]. Its detailed
form is outlined in Appendix 2. Other forms
of the transfer equation, such as those derivable
from equation 28 of Reed and German, can
also be used to obtain the matrix A.

Once A was determined, stratospheric residence
times against transfer to the troposphere were
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obtained by using (3). The method by which
the large (399 X 399) matrix 1 — A was inverted
s outlined in Appendix 3. Residence times
presented here (Figures 2-5) are for several dif-
ferent sets of velocities and diffusion coefficients.
These times are comparable with times cited
in the literature (e.g., Pressman and Warneck
{1970] and references therein).

There are several sources of error present
in the course of the calculation of the residence
times presented here. Because of the significant
contribution to the residence times of the
particles that escape only after traveling higher
than their original position, it is necessary to
extend the upper boundary of the model con-
siderably above any height for which useful
results are sought. Reed and German’s data
extend to 27 km; the upper boundary of our
model is 39 km. Residence times at altitudes
near 27 km nevertheless are of reduced accuracy
because (1) particles cannot move higher than
39 km and (2) the diffusion parameters used
in the region above 27 km (in this calculation,
the same as those at 27 km) lack detailed
physical basis. We do not present residence
times for altitudes above 27 km because of the
second influence above. On the basis of a few
sample calculations, we estimate that at 27
km these errors total to at most 5% and decrease
rapidly with decreasing altitude.

At the lower boundary the representation of
the tropopause is quite crude. The times pre-
sented here may best be considered as the
average times to cross the penetrable boundaries
indicated in Figure 1, whether or not they
coincide with the actual tropopause. The effect
of the difference between our simple represen-
tation of the tropopause and an accurate repre-
sentation is rather small at a distance of several
kilometers from this boundary. At smaller
distances interpretation of our results is difficult
and not necessarily meaningful; hence no iso-
lines are presented in Figures 2-5 for times less
than 0.3 year. It should be remembered that
calculations of residence times for particles at
the tropopause or in the troposphere (against
contact with the earth’s surface, for example)
must include averaging over the fraction of
particles that pass through the stratosphere
before reaching the sink.

Other errors can arise from the finite size
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Fig. 1. A grid representing the division of the

stratosphere into boxes. The longitudinal direc-
tion extends perpendicular to the page.

of the boxes, the particular numerical form of
the transfer equation adopted, and computer
roundoff. These are small effects, of the order
of a few percent at most.

Of most decisive importance in determining
the magnitude of the residence times are the
values of the winds and eddy diffusion co-
efficients. In actuality these values change in
time, whereas our calculation assumes them to
be time independent. In a situation with time
dependent parameters the residence times
should be bounded by times caleulated by using
as time independent parameters the highest
and lowest rates of diffusion.

Residence times presented in Figures 2 and 3
are based upon Reed and German’s transport
coefficients for February and May. Times based
on the parameters for August and November are
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Fig. 2. Contours of stratospheric residence

times based on Reed and German’s transport
coefficients for February. The times are in years.
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Fig. 3. Contours of stratospheric residence

times based on Reed and German’s transport
coefficients for May. The times are in years.

almost exactly equal to those for February
and May, respectively, but with the reversal
of the hemispheres. (Parameters for the southern
and northern hemispheres were assumed equal
for any given season, except for sign reversals,
for the purposes of the calculation, of the
horizontal mean wind and anisotropic eddy
diffusion coefficient.)

If all the winds and eddy diffusion coefficients
are multiplied by a constant factor, the residence
times are simply divided by the same factor.
Thus independent estimates of residence times
implicitly determine the transport parameters
to a certain extent. If the ratios between the
transport parameters are altered, there is no
simple scaling method. To illustrate this prob-
lem, calculations were made of residence times
with horizontal winds and horizontal eddy
diffusion coefficients multiplied by 0.1 and are
presented in Figures 4 and 5. It is seen that
these times are mostly greater than those in
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Fig. 4. Contours of stratospheric residence
times based on Reed and German’s transport
coefficients for February with the horizontal
parameters multiplied by 0.1. The times are in
years.
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Figures 2 and 3. A similar calculation, with
horizontal transport parameters multiplied by
10, showed only a small decrease from the
values in Figures 2 and 3. The scaling method
would therefore imply that, if the vertical
winds and diffusion coefficients were multiplied
by 0.1 and the horizontal parameters left the
same, the times in Figures 2 and 3 would be
multiplied by a factor only slightly less than
10. This indicates that for Reed and German’s
data the horizontal motion is rapid enough
that vertical motion is the most important
determinant of the stratospheric residence
times against exit into the troposphere.

AppENDIX 1

If a particle in a box may exit from the
region through more than one sink, the average
time to reach a particular sink is infinite, since
some particles never reach it. We may instead
consider the average time to get to the sink
for those particles that eventually get there.
It is apparent that such a time may be de-
termined for movement to any box as well as
to a particular sink.

To analyze the situation, let p, be the
probability that a particle in box ¢ eventually
reaches box %k (i.e, does not leave the region
instead), and let n, be the average number
of steps taken by those particles that do make
the journey to box k. Box k& may be considered
to be a particular sink if desired. Then

N
DPir = E Aipie + Ay

i=1,i%k

N
Nip = Z Aiipik("ik + 1) + A4,

i=1,i=k

i,k=1’...,N

Unfortunately, the solution to this set of
equations is at least as difficult to compute as
the time evolution of the mass transport equa-
tion, which also can give the average times
taken to reach various areas.

APPENDIX 2

Presented below is our form of (5), from which
A may be derived. This form is discussed in
Bassett et al. [1973]. A representative set of boxes
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is pictured and labeled in Figure 6; terms not
defined explicitly are the same as those used by
Reed and German [1965].

ms[n + 1] = ms[n]

_{ {05( vy it (V) > 0} — Ku/(Ch — C)
C( V') i (V') <0

_ {K,,'(Ca — Cy) if K,.' > OH
K",(CZ - CB) if K,." <0)Jys1/2a0.0. 000
+ R+ S5

where R represents terms analogous to the one
in large brackets, due to fluxes through the
faces of box 5 that border boxes 2, 4, and 8.

In this equation C'\ = m/V., where V; is the
volume cf box 1,

(V') = () — TK,.,)Ar

K |K, r)
[ i uz
Koy (Ay 20z ) A7

K,. = (K,./202) AT

and

1
A = Az2ma cos (@)

Here (v) is the average horizontal velocity.
Within the large square brackets, the wind
and diffusion parameters are evaluated at (y +
%Ay, z), 1.e., the midpoint of the face between
boxes § and 6, and the mass at time interval n.

APPENDIX 3

Suppose the time step 7 is chosen small enough
that the transition probabilities A,; are nonzero
only if 7 and j are the labels of physically
neighboring boxes. The matrix 1 — A is then
very sparse, having at most nine nonzero ele-
ments in any row or column. Before any attempt
is made to solve (3), it is clearly advantageous to
order the boxes in such a way that these nonzero
elements are localized in an ordered pattern of
submatrices or blocks.

One way of achieving this is to number the
boxes sequentially left to right across the rows
of Figure 1, beginning at the bottom of the
stratosphere. The matrix 1 — A can then be
partitioned so that the ¢, jth element lies in
a block whose dimensions are the number of
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Fig. 5. Contours of stratospheric residence
times based on Reed and German’s transport
coefficients for May with the horizontal param-
eters multiplied by 0.1. The times are in years.
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boxes in the rows containing boxes ¢ and j,
respectively. Since the element A;; is nonzero
only if 7 and j lie either in the same or adjacent
rows, 1 — A is tridiagonal in blocks; i.e., it has
nonzero elements only in a set consisting of
diagonal blocks and blocks immediately adjacent
to the diagonal.

It is useful for computational purposes to
bhave all blocks the same size. This can be
achieved by increasing the size of the matrix
by including rows and columns with unity in the
diagonal positions and zero elsewhere. This
procedure does not affect the inverse of the
original matrix. In our computation, 28 such
rows and columns were introduced.

All elements in blocks immediately below
the diagonal may be successively eliminated by

1 Z (upwards)

1 2 3
AZ 4 5 6 —
y=ag
7 8 9 (north)
Ay=aAg

Fig. 6. A grid representing a set of neighbor-
ing boxes. The longitudinal direction extends
perpendicular to the page.
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using pivots selected in the conventional manner
from the diagonal blocks. These pivots can also
be used to eliminate appropriate nonpivot
elements in the diagonal blocks so that the
transformed matrix can be solved by using
back substitution.
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