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The method presented by Hewitt and Martin (1973) for calculating residence times is elaborated and 
extended. A simple modification of the procedure allows the calculation of transfer times (a transfer time 
is the average time it takes a particle at a given place to move to a certain other place). Exact results rele- 
vant to the use of the method are discussed. The method is used to calculate times for transfer from the 

northern to the southern stratosphere. 

Consider a system of particles in motion in a region of 
space, such as part of the atmosphere or ocean. Often it is 
useful to know the average time it takes for a particle at a given 
place to move to a certain other place. This average time will 
be called a transfer time. If the certain other place is anywhere 
exterior to the region, then the transfer time is called a 
residence time. 

Hewitt and Martin [1973] presented a straightforward 
method for calculating residence times from properties of a 
medium such as winds and diffusion rates. In this paper new 
results concerning that technique are presented. First, it is 
shown how to determine where, on the average, particles 
spend their time before exiting from the system and how 
residence times may be calculated when the transport 
parameters vary with time. Second, it is shown how to simply 
extend the method so as to calculate transfer times. Third, an 
exact solution for residence times is obtained for a one- 

dimensional problem and used to gain insight into the method 
for calculating residence and transfer times. The technique for 
calculating transfer times is used to determine times for move- 
ment from the northern to the southern stratosphere. Finally, 
we offer some cautionary remarks on the calculation of 
residence and transfer times. 

RESIDENCE TIMES 

A residence time is the average time required for a particle at 
a given place to exit from a particular region of space. Let us 
consider briefly how residence times may be calculated from 
properties of the medium. Divide the region of space into N 
boxes and time into intervals of duration r, and let A o be the 
probability that a particle in box i moves to box j during any 
time interval. For example, in a calculation of stratospheric 
residence times the N boxes will partition the volume of the 
stratosphere, and the probabilities A o will depend on move- 
ments of particles due to processes such as winds and tur- 
bulence. The residence time Ti is defined to be the average time 
for a particle in box i to escape from the system of boxes. We 
may write (see Hewitt and Martin [1973], equation (2), where 
T• is written ntr) 

N 

T, = • A,iTi + r i = 1, ... , N (1) 

In the stratospheric case, T• is the average time taken for a par- 
ticle to physically move out of the stratosphere, for example, 
by movement to the troposphere or through rainout, or to be 
chemically transformed. 
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The solution to (1) is 

T = (I- A)-tU (2) 

Here we have written the transition probabilities Ao as a 
matrix A and the times Tt as a column vector T; l is the unit 
matrix and U is a column vector each of whose elements 

equals r. Thus if we know the transition probabilities A, the 
same for each time interval of duration r, then the average 
time T• for removal from the region of a particle beginning in 
box i may be calculated using (2). 

By conservation of particles during a time interval, used in 
deriving (2) above, 

N 

Bi q- • Aii = 1 i= 1, ..., N 
i--1 

where B• is the probability that a particle in box i moves out of 
the set of boxes during a time interval. In most physical 
problems any particle 'will eventually escape from the system, 
so that the residence times are finite. For our model to reflect 

this fact there must exist for each box i at least one sequence of 
nonzero transition probabilities Ao, A•, ..., A•,q, in which q 
labels a box for which Bq > 0. This condition is necessary and 
sufficient for the existence of the matrix (I - A) -•. 

Sometimes one would like to know not only the residence 
times but also where the particles spend their time before they 
escape from the system. In our picture this is equivalent to 
knowing the average time a particle starting in a particular box 
spends in any given box before escaping. For example, a ther- 
monuclear explosion may inject certain amounts of n!trogen 
oxides into the stratosphere at various locations. One may 
wish to know not only the average length of time spent by the 
nitrogen oxide molecules in the stratosphere but also how long 
they spend on average in any stated region, say, as a means for 
calculating the expected catalytic destruction of ozone in that 
region. We now show how the average time a particle starting 
in a particular box spends in any given box before escaping 
may be simply obtained from the matrix (I - A) -•. 

First we note that the steady state mass distribution 
resulting from a continuous point source is of the same func- 
tional form as the expected time distribution of a single parti- 
cle released at the position of the point source. That is, the 
fraction of the total mass in a particular box in the steady state 
distribution equals the expected fraction of the residence time 
spent in the particular box by a single particle released at the 
point of the continuous source. This may be seen by viewing 
the single particle as a member of the ensemble of particles 
released by the continuous source. 

Consider the mass transfer equation for the system with 
continuous source in box i, written in a numerical representa- 
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tion of the form 

N 

mk(n + 1) = • mi(n) Aik + S• (3) 
i=1 

k= 1,...,N 

Here rn•(n) is the mass in box k at the nth time interval and S is 
the amount of mass added to box i during this interval. Note 
that if (3) is written in matrix form, m(n) is a row vector (as 
contrasted to the column vector T) which multiplies A on the 
left. The steady state solution is found by setting m(n + 1) = 
m(n) -• m. Then 

m = S(i)(•- A)-' (4) 

where S(i) is a row vector with an S in position i and zeroes 
elsewhere. The fraction of the total mass in boxj is mj/Ee=i N 
ß mn. Therefore for a particle starting in box i the average time 
spent in box j before escape is seen to be given by thejth com- 
ponent of 

U(i)(I - A) -1 (5) 

where U(i) is a row vector with a r in position i and zeroes 
elsewhere. That is, a particle starting in box i spends an 
average time equal to r times the i, jth element of (I - A)-1 in 
box j before exiting from the system. The sum of all the ele- 
ments in the ith row of r(I - A)-1 is then equal to the residence 
time Tt, as obviously must be the case. 

The motions of different particles are independent. 
Therefore if a set of particles is released in the same box or in 
different bokes, the expected total time spent in particular 
boxes may be determined by adding the appropriate times 
given by (5). 

Let us say we introduce certain masses of particles at various 
places in the stratosphere and wi'sh to determine the average 
length of time spent by any of these particles in any given 
region of the stratosphere. That is, we might wish to know, for 
example, the expected number of particle days (a particle 
spending a day), due to the masses introduced, spent north of a 
certain latitude. Let M be a row vector of the total masses in- 

troduced into each box. Then by using (5) the time spent in 
box j by any of this mass, measured in units of mass time (a 
certain mass of particles spending a certain length of time in 
box j), is simply given by thejth component of Mr(I - A) -1. 
Of course if one wishes to know exactly when the particles on 
average spend their time in each box, then one must solve the 
time-dependent mass transfer equation (3). 

In summary, a particle released in box i spends on the 
average a certain amount of time in box j before exiting from 
the region. This time has been determined to be equal to r 
times the i, jth element of (I - A) -•. The residence time is the 
sum over all the boxesj = 1, ..., N of the average times spent 
in box j and thus equals (I - A)-IU. 

The solution (2) holds only if A is independent of time. If A 
varies in time, the solution (2) will be accurate to the extent 
that the time for change in A is large'in comparison to the 
times T. However, it is also possible to calculate residence 
times more exactly when A is a function of time. This may be 
usetul, for example, in calculating more accurate stratospheric 
residence times, since the stratospheric transport coefficients 
show a fairly pronounced seasonal variation. Denote the 
residence time for particles in box i at the nth time interval by 
Tt(n): this is the average time for a particle located in box i at 
the nth time interval to move out of the region. Analogous to 
(1), we may write 

N 

T,(n) = • A,i(n)Ti(n q- 1) q- r(n) 
i=1 

(6) 

i= 1,..-,N 

where the Ao(n ) are the transition probabilities for the nth 
time interval which has duration r(n). The residence times 
must be calculated independently for each time interval. For 
T(n) we may write 

T(n) = lim • A(n)A(n q- 1)... 
K..-• co k = 0 

X ''' A(n --I- k -- 1)lJ(n -Jr- k) 

--I- A(n -Jr- k) T(n --I- K --I- 1) (7) 
= 

where U(n) is a column vector each of whose elements equals 

In almost every physically realistic situation it will be true 
that 

K 

lim II A(n q- k)--> 0 (8) 
K• k=O 

where 0 is the matrix of all zeroes. (We have not been able to 
prove this generally.) When (8) holds, we may write 

K 

T(n) - lim • A(n) ... A(n • k -- 1)U(n • k) (9) 
K-• k--0 

T(n) may be found straightforwardly by calculating successive 
terms in this sum, although this will usually be a lengthy 
process. When A(n) and U(n) are independent of n, the solu- 
tion (9) for T(n) becomes identical with the earlier solution (2). 

Thus far we have considered the problem of calculating 
residence times from the procedural point of view of dividing 
the region of space under consideration into a set of boxes. 
Particles move from box to box, and when they leave the 
region, they also exit from the set of boxes. However, in many 
problems it is convenient to alter this picture slightly. Let us 
add to the set of N boxes which partition the physical region 
some additional boxes to correspond to the sinks where the 
particles go upon exiting from the physical region. These ad- 
ditional boxes may be labeled N + 1, ..., L. If we are 
calculating stratospheric residence times, the N boxes partition 
the stratosphere. The additional boxes N + 1, ..., L will 
represent the sinks for the particles in the stratosphere, for ex- 
ample, regions of the troposphere or symbolic repositories for 
chemically transformed particles. The probabilities Bi for 
removal from the set of N boxes will now become transition 

probabilities to the additional boxes which correspond to 
sinks. Naturally, on reaching a physical sink a particle may not 
return to the physical region; therefore the transition 
probabilities from the additional boxes to boxes cor- 
responding to the physical region must equal zero. 

Mathematically, this situation may be represented as fol- 
lows. Let Po, i, j = 1, ..., L be the transition probabilities 
between the augmented set of L boxes. Then 

Pii = Aii i, j = 1, ... , N 
, 

L 

E Pii--' Bi i = 1,..., N 
i=N+I 

Pii-- 0 i = Nq- 1, ... ,L 
(10) 

j=I,...,N 
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L 

•. P,i = 1 i= N+ 1, ... ,L 
i=N+I 

For example, if there is a single sink, L = N + 1, then 

p= A B (11) 
0 1 

where B is a column vector of the Bt and 0 is a row vector of 
zeroes. When modeling the stratosphere with the transition 
probabilities in (11), all particles exiting from the stratosphere 
will be transferred to the single box labeled N 4- 1. Additional 
boxes corresponding to sinks may be added if we wish to dis- 
tinguish where or how a particle exited from the physical 
region, for example, which part of the troposphere a particle 
entered. 

In problems involving residence and transfer times the addi- 
tion of extra boxes corresponding to sinks allows utilization of 
useful results from the theory of matrices. Since each row sum 
of P equals one and each element is nonnegative, P is by defini- 
tion a stochastic matrix (see for example Gantmacher [1959] or 
Feller [1968]). The boxes i = 1, ..., N which correspond 
directly to the physical region under consideration are called 
transient states or inessential states. The boxes i = N 4- 1, ..., 
L which correspond to sinks are called persistent states or es- 
sential states. This.new picture of our problem will be used to 
good effect in the next section, which is devoted to transfer 
times. 

TRANSFER TIMES 

We define a transfer time to be the average time it takes a 
particle in a given box to move to one of a set B' of boxes, the 
average taken over only those particles that do not first reach 
one of a set B" of boxes. We may think of transfer times in 
terms of a particular example: the average time for a particle to 
move from a particular place in the northern stratosphere to 
anywhere in the southern stratosphere (or vice versa), when 
permanent transfer to the troposphere may also occur. Our set 
of N boxes will correspond to the stratosphere, and the boxes 
N + 1, ..., L will correspond to regions of the troposphere to 
which particles may move. We wish to calculate the average 
time a particle in the northern stratosphere takes to move to 
the southern stratosphere, ignoring those particles that reach 
the troposphere before reaching the southern stratosphere. 
Thus the set B' consists of those boxes corresponding to the 
southern stratosphere, and the set B • consists of those boxes 
corresponding to the troposphere. Note again that in 
calculating these transfer times, when taking the average over 
particles, we must exclude those particles that reach the 
troposphere first, since they may never reach the southern 
stratosphere. The inclusion of such particles in the average ob- 
viously would lead to infinite transfer times. 

Now let us consider how to solve for transfer times. (Hewitt 
and Martin [1973] incorrectly noted that it is not easy to solve 
for transfer times. In their Appendix 1 the second equation 
and the statement following it are incorrect.) Let T• now be the 
average time for a particle in box i to reach a box in B', the 
average being taken over particles that reach a box in B' before 
reaching one in B '. We rearrange the rows and columns of P so 
that rows and columns labeled i, j = 1, ..., N' correspond to 
boxes not in B". In calculating times to move from the 
northern to the southern stratosphere, boxes in B ' correspond 
to the troposphere, and in this particular example N' = N. To 
calculate transfer times, we must eliminate from consideration 

particles which move to boxes in B". Lel us denote by Atj' 
probabilities which describe the transitions between the boxes 
for those particles that do not move directly to a box in B". 
will be the fraction of particles in box i which move during a 
time interval to a box j from which a set of transitions passing 
through boxes not in B" and terminating at a box in B' is possi- 
ble. For example, consider a particle in box i in the northern 
stratosphere, which moves during a time interval to any box 
also in the stratosphere (i.e., not to a box in B" corresponding 
to the troposphere); A o' is the probability that such a particle 
moves to box j, representing part of the stratosphere, and from 
which eventual transfer to the southern stratosphere is possi- 
ble. Mathematically, 

,_ Pii i j = 1, ... , N' (12) Aii -- N' ' 
• Pi• 

(Remember the boxes labeled 1, ..., N' are those not in B".) 
In the above we have assumed that any particle in the 

stratosphere has a nonzero chance of reaching the southern 
hemisphere before reaching the troposphere. Mathematical- 
ly, this is equivalent to the assumption that all sinks or persis- 
tent states are in B' or B", so that for each box i not in B' or B" 
there is at least one box j such that Po -• 0, j = 1, ..., N'. 

Of the transitions represented by •,' between the boxes not in 
B", those in B' act like sinks. That is, in following a particle 
from box to box we stop incrementing the time T• when it 
reaches a box in B'. As we follow a particle released in the 
northern stratosphere as it moves from place to place, we note 
the time elapsed when the particle moves into the southern 
stratosphere. For the purpose of calculating these 
stratospheric transfer times the southern stratosphere thus acts 
like a sink. To model the effective role of B' as a set of sinks in 

calculating T•, we merely set T• = 0 if box i is in B'. We can 
easily write down equations for T• similar to (1): 

N' 

T, = • A,i'T, q- r i = 1, ... , N' i (• B' 
i-, (13) 

T• = 0 i • B' 

To solve for T•, we note that the specification T• - 0 for i 
B' effectively deletes rows and columns corresponding to boxes 
in B' from the matrix •,'. Denote the matrix which results from 

deleting from A' rows and columns corresponding to B' by 
Then analogous to (2), the transfer times are given by 

T = (I- A")-•U (14) 

where the order of l is the same as that of A" and is equal to 
the number of elements in T and U. 

To summarize the procedure for obtaining transfer times: 
1. Normalize the elements of each row of P corresponding 

to boxes not in B", giving A' (equation (12)). 
2. Delete rows and columns corresponding to boxes in B' 

from A', giving A". 
3. Solve for the transfer times T using (14). 
If we wish to determine how long a particle beginning in box 

i spends on the average in box j on its way to a box in the set 
B', ignoring particles that first reach a box in B ', we may use 
the method presented earlier. It is easy to show that this time is 
equal to r times the i, jth element of (1 -•")-•. 

One may also wish to know the actual probability that a 
particle in box i will reach a box in B' before reaching one in 
B". As well as determining the time for a particle at a given 
place in the northern stratosphere to move to the southern 
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stratosphere (averaged over particles that make the transfer), 
one very likely would wish to know the probability that this 
transfer eventually takes place. For a particle in box i let this 
probability, which we call a transfer probability, be denoted by 
R•. We may write 

N ! 

Ri = • PiiRi i = 1, ''' , N' i (• B' 
i=1 

Ri = 1 i•B' 
(15• 

To solve (15), first form P' by deleting rows and columns of P 
corresponding to boxes in B' or B". Then multiply (I - P')-• by 
the column vector whose ith component is •jcB,P•j. 

A residence time is also a transter time. In our example the 
set B' consists of the boxes corresponding to the troposphere, 
and B" is the empty set. In general, the set B' may contain any 
particular box out of the full set of L boxes. For example, a 
transfer time may be calculated from a given box to one of a 
set which contains boxes corresponding to regions of the 
troposphere. The set B" will always contain all boxes cor- 
responding to sinks which are not in B' but may contain other 
boxes as well. In calculating stratospheric transfer times, B" 
will always contain all boxes not in B' which correspond to 
regions of the troposphere and perhaps boxes corresponding 
to regions of the stratosphere as well. Since all boxes cor- 
responding to sinks are either in B' or B" every particle will 
eventually reach a box in B' or B", and therefore transfer times 
will always exist. 

EXACT FORMULATION FOR RESIDENCE TIMES 

IN A ONE-DIMENSIONAL PROBLEM 

One simple and convenient way to determine the transition 
probabilities A is to write the mass transfer equation in the 
numerical form (3) and note the coefficients of mj(n) on the 
right-hand side. Although the transition probabilities obtained 
in this way will usually serve adequately in determining 
residence and transfer times, they are not guaranteed to give 
good results. Here we investigate the form of the transition 
probabilities in a one-dimensional transfer problem in which 
an analytical expression may be obtained for the residence 
times. 

Let us stop thinking about transition probabilities for move- 
ment from one box to another during a fixed finite time inter- 
val and reconsider what the idea of a residence time means. In 

a diffusion process a particle starting at the center of a given 
box i moves in a random walk toward neighboring boxes, back 
toward the center of the given box, and so forth. We note that 
a particle has probability one of eventually reaching some con- 
tiguous box (a neighboring box with a boundary common with 
box i or a box corresponding to a sink that may be reached 
directly from box i). Furthermore, there is a certain 
probability for each contiguous box j that the particle from 
box i reaches it before reaching any other contiguous box. Call 
this probability fo. We set fo = 0 ifj is not a box contiguous to 
box i. By definition f•i = 0 and by conservation of particles, 
5'•,•=xt'f,• = 1. 

Now since we are determining residence times, we may also 
note that for the fraction fo of particles first reaching box j 
from box i there is an average time for the movement from box 
i to boxj. Denote by ro the average time that a particle in box i 
takes to reach box j, the average taken over those particles 
which reach box j before reaching any other box k, k • i, 
k • j. Then our formula (1) for residence times may be written 
in terms of the quantities fo and rtj as 

N L 

Ti = • fgiTi q- • fgir,i i = 1, --. , N (16) 
i=l i=I 

(In the second sum in (16) no summation over i is implied.) 
Physically, this formula indicates that the average time for a 
particle in box i to escape from the system to a sink equals the 
weighted sum of times to escape from boxesj = 1, ..., N cor- 
responding to the physical system and to which direct transfer 
from box i may be made, plus the weighted sum of times for 
direct transfer to any boxj = 1, ..., L whether corresponding 
to the physical region or to a sink. The solution to (16) may be 
written 

T = (I- F)-IV 
(]7) 

L 

Vi = • Jiirii i = 1, ... , N 
i--1 

where the rows and columns of l and F and the elements of T 

and V refer to the boxes i = 1, ..., N which correspond to the 
physical system. The advantage of the formulation (17) over 
(1) is that the fractions f• and the average times r• may be 
calculated exactly for a particular one-dimensional problem, 
which we now consider. 

Let the movement of particles in one dimension be described 
by the equation 

ot - oz - Vc 

For example, we may imagine a one-dimensional model of at- 
mospheric diffusion in which z is the altitude coordinate 
(positive upward) and in which the time and space variation in 
the concentration c of some tracer particles is described by 
(18). The residence time at height z is the average time it takes 
a particle released at height z to reach the ground. In such a 
problem, K would be the vertical eddy diffusion coefficient, 
and V = w - K/H, where w is the mean vertical wind speed 
and H is the scale height. Of course this model of atmospheric 
diffusion is more or less idealized, depending on the diffusing 
species and the physical circumstances, because processes such 
as the horizontal divergence of particles and rainout are ig- 
nored. Even this one-dimensional problem is not easy to solve 
analytically if K, w, and H vary with z. 

Divide the altitude coordinate into a series of boxes, labeled 
1, ..., N from the ground up. Box N + 1 corresponds to the 
surface of the earth, which is the sink for the problem. f• •+• is 
the probability that a particle in box i reaches the next higher 
box i + 1 before reaching the next lower box i - 1, and r• •+• is 
the average time required for this movement. The box N + 1 
corresponding to the surface of the earth will have fN+•t = 
•N+I l, 

For our special problem, K and V are constants. Furth's for- 
mula for first passages [Feller, 1968, p. 359] is an expression 
for the probability u(t, •) dt that in a diffusion process in one 
dimension described by (18) a particle released at time zero 
and position • > 0 will reach 0 before reaching a > • and that 
this event will occur in an infinitesimal time interval dt 

centered on t: 

u(t, •) = 2•-Ka -•exp [---}( Vt -3- 2•) V/K] 

X • • exp (-•'• Kt/a •) sin •'•/a (19) 

(Note that our K corresponds to •D in Feller's [1968] notation 
and our V to his c; see his formula (6.12), p. 358.) Furth's for- 
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mula (19) may be used to calculate the values offtj and r o to be 
used in (17). Let the center of box i be denoted by zt. If we set zt 
- z,_• = t• and z•+• - zt = a - •, thus being concerned with 
passage from the center of one box to the center of another, 
then 

1, ,-1 = u(t, •) dt 

], ,+1 = •(t, o• -- •) dt = 1 -- f, ,-1 (20) 

lii=O j= 1,''',N 

j•i-1 j•i+l 

where 5 is the function u with V-• - V. The mean times r o for 
the two transfers, weighted by the respective probabilities of 
making the transfer, are given by 

fi i-lTi i-1 = tu(t, •) dt 
(21) 

f• •+lr• •+1 = t•(t, a -- •) dt 

Jijr o = 0 j = 1, '", N j • i- I j • i + 1.. 

To give an idea of the typical form of the probabilities J• 
and the average times ro, we calculate expressions for a 
specific case. First assume uniform box sizes, so that zt+• - z• 
= z, - z,_• = • = •a. We may then easily perform the integrals 

ß 

in (20) and obtain 

f• •_, = Cf exp (-•V/2K) (22) 

f• t+• = Cf exp (•V/2K) (23) 

C• = 2 ••0 (--1)•(2v + 1) •r : (2v + 1) 2 + (• VIa'K) •' (24) 
Since Cr in (24) does not depend upon the sign of V, we may 
replace its calculation by the normalization expression J• t-• + 
f• ,+• = 1 . Equations (22) and (23) become 

f, ,_• = exp (--• V/2K)/[exp (--• V/2K) 

q- exp (• V/2 K)] 

fi i+1 = 1 -- fi i-1 

As expected, particles are more likely to move to the box 
toward which the effective wind V is blowing; when V = O, 
each probability equals «, as is required by symmetry. 

For the probability j• multiplied by the average time r o the 
integrals (21) with a = 2• give 

J• ,_xr• •_• = C• exp (-•V/2K) (26) 

f •+•r• •+• = C• exp(+liV/2K) (27) 

•o )•(2v + 1) 
-- •r K •--•0 [(2v + 1 + (•V/•rK)•'] •' 

The sum in (28) converges rapidly if the effective wind is not 
too dominant over diffusion, that is, if •V/•-K is not large in 
comparison with one. 

In comparing (16) with (1) it is not hard to show that the 
equations will be identical if 

T 

1 -- Aii = •: i = 1,". , N (29) 

i--1 

(25) 

A o = (1 - At,•.• i,j = l, ..., N i •j (30) 

The formulation (16) uses average times to, while the for- 
mulation (1) uses rates of transfer (transfer of a mass fraction 
Ao in time r). Since dimensionally a rate is the inverse of a 
time, the relations (29) and (30) make sense physically. From 
these expressions one may also note that I -- A is proportional 
to r, with the proportionality factor independent of r. There- 
fore the solution (2) found using (29) and (30) is completely 
independent of r, as indeed must be the case if use of these 
expressions is to give the same results as (17), which does not 
involve r. 

In Figure 1 we illustrate the form of the transition 
probabilities found using formulas (25)-(30). The results are 
given in terms of the parameters r = •V/K and ao = (•:/Kr) 
'lbo - Aol. The results presented in Figure 1 for smaller r are 
quite close to those obtained by approximating the derivatives 
in (18) by the simple finite difference forms 

c(zi, n + 1)-- c(zi, n) 

C(Zi+l, •/) -- 2C(Zi, F!) + C(Zi-1, •/) 
= K 

-- V C(Zi+l' •/) -- C(Zi--l' 

where c(z•, n) is the value of c at position zt and at the nth time 
interval. However, for large r (say, r >• 1) the form of the tran- 
sition probabilities differs from the form obtained from any 
standard numerical representation of (18). This is only to be 
expected, since a numerical representation designed to repre- 
sent mass transfer is not necessarily accurate when used to ob- 
tain the times taken for the transfer. 

Just as we have here calculated mathematically exact 
residence times for a one-dimensional problem, so may 
transfer times be calculated exactly. This is done by generaliz- 
ing (16) as (1) was generalized in the previous section. In fact, 
the requirements that probabilities be normalized and that 
rows and columns be deleted may be seen to be equivalent to 

3.( 

1.0• 
0 0-5 1.0 1-5 2.0 2-5 3-0 

,• r 
• Fig. 1. Normalized transition probabilities a o as a function of the 
dimensionless ratio r = •V/K. As r increases, the influence of V 
relative to that of K becomes larger, and the rate of transfer from box i 
to the box i + 1 toward which the effective wind is blowing becomes 
more and more dominant. 
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the boundary conditions given by Feller [1968, equation (2.2), 
p. 344, equation (7.4), p. 362] for random walks. 

There would seem at first sight to be no reason not to always 
use the formulation (16) to calculate residence and transfer 
times, since in practice it is only a matter of choosing the cor- 
rect transition probabilities as from Figure 1. And indeed this 
is true in one-dimensional problems with constant K and V. 
But with more complicated problems, difficulties arise. 

If the diffusion parameters vary in space, it seems unlikely 
that mathematically exact transfer times can be obtained even 
in one dimension. In cases when the diffusion parameters vary 
in space, it is easiest to use the local values of the parameters to 
calculate the transition probabilities out of each box. If the 
parameters do not vary significantly from box to box, the 
transfer times resulting from this procedure should closely ap- 
proximate the exact values. 

Exaet formulations of random walk problems in more than 
one dimension usually assume that particles can only move 
parallel to the coordinate axes in integral steps. But in physical 
space, particles can move in any direction, and rigorously for- 
mulating the problem is probably not easy, not to mention 
solving it. In particular, it is not obvious how to treat 
anisotropic diffusion arising from a nondiagonal tensor K of 
diffusion cbefficients. ' 

Given the problem of calculating residence times in a 
problem in more than one dimension and having anisotropic 
diffusion terms, one of two approaches might be used: 

1. Take the transition probabilities to be used in (1) from a 
numerical representation of the diffusion equation. 

2. Calculate the transition probabilities in each direction 
from (29) and (30), ignoring anisotropic diffusion. 

On the basis of our previous discussion it may be recom- 
mended that approach 1 be used if mean motions do not 
dominate (if r •< 1) and anisotropic diffusion terms are impor- 
tant and that approach 2 be used in the converse situation. 
Note that since r is proportional to •, the relative effect of the 
mean motions within the numerical representation can be 
reduced by decreasing the box sizes. 

SAMPLE CALCULATION: TRANSFER TIMES FROM 

NORTHERN TO SOUTHERN STRATOSPHERE 

The method outlined above based on using the quantities fu 
and r,j has been used to determine transfer times for move- 
ment from the northern to the southern stratosphere and the 
probabilities for making the transfer. A grid was assigned in 
the two dimensions of latitude and altitude, and boxes formed 
by sweeping this grid around the earth longitudinally along 
lines of latitude. In latitude there were 25 boxes at each 

altitude spaced evenly between the north and south poles, and 
in altitude, 25 boxes at each latitude, each of height 1 km, and 
centered at altitudes from 15 to 39 km. Thus the stratospheric 
region considered was partitioned into a total of 625 boxes. 

Escape from the set was permitted only by downward move- 
ment from the boxes at 15 km. Particles moving toward the 
poles and upward above 39 km in effect met reflecting barriers, 
and there were no chemical sinks. Thus the set B" of boxes 

represented the region below 15 km. For the particles in the 
northern stratosphere the set B' of boxes consisted of those 
boxes above the equator, since on reaching the center of such a 
box a particle may be considered to have reached the southern 
hemisphere. Thus the matrices inverted, I - A" and I - P', 
were of order 12 X 25 = 300. 

It may be noted that some of the particles that move below 
15 km will eventually move to the southern stratosphere and 

that these particles have been excluded from the averaging 
process. They cannot be easily included except by enlarging 
the model to include the troposphere, since within the model 
as given an indeterminate fraction will be permanently ab- 
sorbed on the surface of the earth. Our calculation is primarily 
meant to illustrate the technique involved. However, the 
model may not be physically unrealistic if, for example, we en- 
visage a fairly complete process of rainout below 15 km. 

The transition probabilities were determined using mean 
winds and eddy diffusion coefficients interpolated from values 
given by Gudiksen et al. [1968] (see also Reed and German 
[1965]). Procedure 2 described above was used. For example, 
the vertical transport parameters at a horizontal face between 
two boxes were used in (25)-(30) to obtain the transition 
probability up from the lower box and down from the upper 
box. The validity of the neglecting of the anisotropic diffusion 
terms in the use of procedure 2 is discussed later. 

Transfer times from the northern to the southern 

stratosphere are presented in Figures 2 and 3 for different sets 
of velocities and eddy diffusion coefficients. The contours on 
each side of the equator in each of the figures refer to transfer 
times for the northern stratosphere, calculated with the trans- 
port parameters for the indicated times of the year. In Figures 
4 and 5 are presented the corresponding probabilities for mak- 
ing the transfer to the southern stratosphere. 

Transfer times are presented only up to 27 km for two 
reasons: (1) the data of Gudiksen et al. extend only to 27 km; 
the parameters used above this height, equal to those at 27 km, 
lack a detailed physical basis and (2) the reflecting barrier at 
39.5 km truncates the trajectories of many particles released 
higher than 27 km. These influences do not affect the times 
significantly at 27 km, however, especially since the effect of 
vertical motions is rather small. 

Of greatest importance in determining the magnitude of the 
transfer times are the values of the winds and eddy diffusion 
coefficients. If all of the transport parameters are multiplied by 
an identical factor, then the transfer times are divided by the 
same factor, and the probabilities for making the transfer are 
unaltered. This scaling property is apparent, for example, in 
formulas (26)-(28): if r = •V/K is a constant, then the times ru 
vary as 1/K. 

The transfer times presented in Figures 2 and 3 are based on 
data for particular times of the year. Transfer times based on 
the time-varying parameters are likely to give results in- 
termediate to these figures. It will normally be the case that 
transfer times based on time-varying parameters are bounded 
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Fig. 2. Contours of times for transfer from the northern to the 
southern stratosphere, based on transport coefficients of Gudiksen et 
HI. for August (left half) and February (right half). The times are in 
years. 
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Fig. 3. Contours of times for transfer from the northern to the 
southern stratosphere, based on transport coefficients of Gudiksen et 
al. for November (left half) and May (right half). The times are in 
years. 
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Fig. 4. Contours of the probability of making the transfer from 
the northern to the southern stratospher.e, based on transport coeffi- 
cients of Gudiksen et al. for August (left half) and February (right 
half). 

by the sets of transfer times obtained using as constant 
parameters the time-varying parameters at particular times. 
Only in certain special situations, as when a particle is blown 
back and forth between two points, will this not be true. Such 
a situation is unlikely in a natural system such as the 
stratosphere, where turbulence plays a major role. 

Interhemispheric mixing times presented in the literature 
(see Pressman and Warneck [1970] and references therein) are 
typically in the range of 3-5 years. Transfer times represen- 
tative of the ones found here (either values for a mid-latitude 
and medium altitude position or values averaged over the en- 
tire hemisphere) are roughly of this size. This agreement may 
be somewhat fortuitous. The parameters of Gudiksen et al., es- 
pecially the horizontal eddy diffusion coefficients, are probably 
too large. If other data, say, those of Reed and German [ 1965], 
had been used, the transfer times obtained would be several 
times smaller than the ones obtained here. A possible con- 
tribution to the agreement is that a stratospheriC transfer time 
as defined here may be a somewhat different quantity than an 
interhemispheric mixing time; this point will be discussed 
further in the next section. 

To check the Validity of neglecting the anisotropic diffusion 
terms in using procedure 2 for calculating the transition 
probabilities, procedure 1 was twice u, sed to calculate the 
transfer times and probabilities, once including and once omit- 
ting the anisotropic terms. It was found that neglecting the 
anisotropic terms typicall y changed the transfer times by a few 
percent or less, although for the. times near th e bottom of the 
region, large fractional changes (of a few tens of percent) 
sometimes occurred. Neglecting the anisotropic terms usually 
changed the transfer probabilities only by small amounts but 
sometimes by up to 0.05 (in the probability itself, not a frac- 
tional change), which was most significant when it affected the 
small transfer probabilities near the bottom of the region. 
There was no clear pattern of increase or decrease in the 
transfer. times or probabilities due to the neglect of the 
anisotropic diffusion terms. 

The net effect of using procedure 2 instead of procedure 1 is 
a combination of the loss of accuracy due to neglect of the 
anisotropic diffusion terms and the improvement of accuracy 
over finite difference methods in treating the horizontal and 
vertical diffusion terms. The size of this second effect was 

determined by comparing the results obtained using procedure 
2 with those obtained applying procedure 1 with the 
anisotropic terms omitted. The magnitude and extent of the 
differences were found to be rather less than the differences, 

described in the preceding paragraph, resulting from 
neglecting the anisotropic terms. Therefore with the 
parameters of Gudiksen et al. and the box sizes used, 
procedure 1 is actually somewhat superior to procedure 2. 
Procedure 2 would be superior if Reed and German's data had 
been used, since then the relative size of the anisotropic diffu- 
sion terms would be smaller. Procedure 2 also would be called 

for if the box sizes were larger. Furthermore, the errors due to 
having finite box sizes are probably as large as those arising 
from either the limitations of finite difference approximations 
or the neglect of the anisotropic diffusion terms in this context, 
especially in the lower stratosphere, where the diffusion 
parameters vary rapidly in space. Be all this as it may, the 
calculation here is meant primarily to illustrate the application 
of the technique described here for calculating transfer times 
and probabilities. 

REMARKS ON INTERPRETING RESIDENCE AND 

TRANSFER TIMES 

When calculating residence or transfer times, one should be 
careful to include in the averaging process all the time trajec- 
tories of all particles that make a significant contribution to 
the average. If this is not done, then one should be careful to 
note which particle trajectories have been excluded or trun- 
cated. Otherwise, a false impression may be imparted as to the 
average time for a particular movement. For example, in 
calculating times for transfer from the northern to the 
southern hemisphere one should mention that the times refer 
only to those particles that eventually make the transfer; 
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Fig. 5. Contours of the probability of making the transfer from 
the northern to the southern stratosphere, based on transport coeffi- 
cients of Gudiksen et al. for November (left half) and May (right half). 
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otherwise, this transfer time might sometimes give an incorrect 
impression as to the dominant physical processes occurring 
(for example, that transfer to the troposphere or chemical 
destruction is unimportant). 

The transfer times presented in the previous section are for 
movement from a particular place in the northern stratosphere 
to anywhere on the boundary between the northern and 
southern halves of the stratosphere. On the other hand, many 
of the interhemispheric mixing times in the literature are ap- 
proximately twice as large as the corresponding transfer times, 
due to the method of calculation. (We hope to verify this 
observation in a later paper.) The method of calculation of in- 
terhemispheric mixing times perhaps selects different particle 
trajectories than for transfer times. This difference may partly 
explain the apparent agreement between the two sets of times, 
noted earlier. The point to be made here is that a transfer time 
is well defined, only if the original position of all particles, the 
positions of all sinks, and the positions of the set of places to 
which the particle transfer is made, are all specified. 

Another case is worth mentioning. Ehhalt [1973] calculated 
tropospheric turnover times from observed steady state mass 
distributions. His turnover time is defined as the average time 
a particle released at height z'spends below that height before 
moving to the surface of the earth (ignoring horizontal 
divergence). This turnover time is the residence time for a par- 
ticle released at height z in a system in which there is a 
reflecting barrier at height z. To calculate the residence time in 
a system without this reflecting barrier, one must include those 
parts of particle trajectories which pass higher than z. The 
difference between the residence time and the turnover time is 

in general not negligible. For example, one may show that if 
the vertical eddy diffusion coefficient and scale height H are 
constant in altitude and there is no vertical wind or rainout, 
then the ratio of the turnover time to the residence time for a 

particle released at height z is 1 - (H/z)(1 - e-*/te). For exam- 
ple, since the scale height H • 6 km, according to this expres- 
sion, a particle released at a tropopause height of z • 12 km 
spends nearly half its time in the stratosphere before reaching 
the surface of the earth. Of course, this result is highly 
idealized since it ignores spatial variation of the diffusion 
coefficient and H as well as horizontal motions and rainout; 
nevertheless, it indicates the possibility of a large contribution 
to residence times due to trajectories that might be thought to 
be unimportant. 

Sometimes the average time a particle remains in a system is 
indicated by a quantity, such as the half-life, which implies 
that the mass of particles in the system decreases exponentially 
with time. However, the use of the approximation of exponen- 
tial decay can be misleading when exit from the system occurs 
as a result of physical movement to a sink. Let us consider 
why. 

If the only means by which a particle can be removed from 
the system is by a process that proceeds uniformly in time and 
space, then the particle mass decreases exponentially with time 
and the residence time T• is related to a quantity such as the 
half-life T•/2 by a simple expression, in this case, Tt = T•/2/ln 
2. Now consider the possibility of physical escape which oc- 
curs at particular places and thus does not proceed uniformly 
in space. The fraction of the particles in the system which exits 
in a given increment of time is not necessarily a constant in 
time. Obviously, if a particle starts in the middle of the region 
away from sinks, then no exit will take place for a finite time. 
Or if winds dominate over diffusion, then all particles starting 
at a given place will exit at about the same time. In these and 
other cases the approximation of exponential decay is ex- 
tremely poor. The application of this approximation to situa- 
tions where exit from the system occurs as a result of physical 
movement gives results whose interpretation as a residence or 
transfer time may not be meaningful. In practice, times 
calculated using the assumption of exponential decay are only 
safely interpreted pragmatically as being the results of the 
procedure used to obtain them, as their relation to times for a 
particle to move from one place to another may be difficult to 
ascertain. 
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