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Critical Evaluation of Residence Times Calculated 

Using the Exponential Approximation 
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The applicability and accuracy of the approximation of exponential decay in calculating residence times 
and transfer times are investigated by using simple models. Residence times so calculated are usually 
accurate to within tens of percent, while interhemispheric mixing times differ from corresponding transfer 
times by about a factor of 2. 

A common problem in the study of turbulent fluids is to 
determine the average amount of time it takes a particle to 
move from one place to another. The residence time is a 
common example: it is the average time that it takes for a 
particle to move out of a certain region. 

Often in determining such times, use is made of what will be 
called here the 'exponential approximation.' The total mass of 
a tracer particle is assumed to decrease exponentially with time 
in a certain region. With this assumption and with the mea- 
sured change of tracer mass with time the average time for 
particular types of movement may be calculated. For example, 
this technique has been used to measure residence and other 
times in the atmosphere [Peirson and Cambray, 1967; Fabian 
et al., 1968; Nydal, 1968; Peirsonl 1969]. In this paper the appli- 
cability and accuracy of the exponential approximation will be 
investigated with the aid of some simple analytical and numer- 
ical models. • 

Although the models used here are simple, this does not 
mean that the results obtained do not apply to realistic situa- 
tions. In particular, if the exponential approximation gives 
inaccurate results for a simple model, then it cannot be ex- 
pected to be accurate when itis applied to a complex situation. 
At the very least, further investigation would be called for. 

It should be noted that the exponential approximation 
seems to be used less and less, at least for atmospheric prob- 
lems. For example, one-dimensional transport may be treated 
by using an altitude dependent diffusion coefficient. In addi- 
tion, while the exponential approximation is used when the 
masses in a system are changing with time, residence times also 
may be determined from steady slate mass distributions. Some 
comments on such calculations are given by Martin [1976]. 

We analyze first the application of the exponential approxi- 
mation to the calculation of residence times in a one-dimen- 

sional system, and then its application to the calculation of 
transfer times (or times for interhemispheric mixing). 

RESIDENCE TIMES 

Consider a one-dime•nsional system with an absorbing bar- 
rier at z = 0, unbounded as z -, oo, in which the density varies 
as exp (-z/H), where H is the scale height. Let the diffusion 
coefficient be a constant value K, so that the concentration c of 
a trace substance is determined by the diffusion equation 

Oc O•c K Oc (1) Ot -- KO-•+ HOz 
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Such a system might represent an idealized atmosphere, with z 
= 0 corresponding to the surface of the earth, or represent the 
stratosphere, with z = 0 corresponding to the tropopause 
(below which rainout occurs rapidly). 

If a tracer particle is released at height z = z•, the probability 
density u(t, z) for the position z of the particle at time t is 

u(t, z) = (4•rKt) -•/• exp 4Kt 

-- exp +•- (z + Z 1 (2) 
(All the formulas in this paper either are presented by Feller 
[1968, chap. 14] or may be calculated by using the methods 
described therein.) The probability density p(t) for the time t 
before absorption at z = 0 is 

p(t) = K -•z 

_ z• ( (z, -- Kt/H) 2) -- (4•r Kta) •/2 exp -- 4 Kt (3) 
The average amount of time T(zx) that the particle spends 
before reaching z = 0 is 

T(z•) = tp(t) dr z, H -- K (4) 
If the tracer is initially distributed at a constaht mole frac, tion, 
the average amount of time it spends before reaching z = 0 is t 
= H2/K. Thus a representative height in the system may be 
taken to be z = H. 

Suppose we wish to use the exponential approximation to 

determine T(z•) or 7 •. Startin• at a particular tii'ne • = 0, we 
measure the total tracer mass as a function of time, m(t). For a 
particle starting at z• this ma•s is given by re(t) = m(O)j'o•U(t, 
z) dz. Assuming that the mass in the system drops off ?ughly 
exponentially with time, we fit the observed mass rn(t) to a 
curve 

re(t) = m(0) exp [-t/Te(t, zx)] (5) 

Te is the residence time as determined by using the exponential 
approximation. In other words, at any given time t the ob- 
served mass rn(t) is used to calculate a residence time Te, which 
thus depe'nds on t, since re(t) does not drop off in a uniform 
exponential manner. It is also possible to assume that the 
decrease proFeeds from a time tx: 

m(t) = m(t•) exp [-(t - t•)/Te(t, z•, t•)] (6) 

This may be the case in many practical problems where, for 
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example, measurements only begin some time after various 
injections of mass into the system have been made. 

To see roughly how accurate the exponential approximation 
is in these circumstances, we here compare Te with T. It would 
also be possible to compare rn(t) with me(t) = rn(0) exp 
(-t/T). We prefer the former method because normally when 
the exponential approximation is used, T is not known, and 
Te is the result of the calculation. If desired, however, it is 
simple to calculate rne(t)/rn(t) = exp (-t(1 - T/Te)/T). 

In Figure 1 the ratio Te(t,H)/T(H) is plotted against the 
time t in units of T(H). For example, if H = 6 km and K = 36 
km 2 yr -x (-• 1.1 m 2 s-X), then T(H) = 1 yr. It may be noted that 
the ratio is for short times much greater than l, when few 
particles have had time to reach z = 0; it then drops below 1 
when the bulk of the particles (moving at the average velocity 
-K/H) reach z = 0; and it finally rises above 1 again as the 
straggling tail of the particle distribution is slowly absorbed. 

The general shape observed in Figure 1 holds for the ratio 
Te(t, zx)/T(zx) at other heights. When zx < H, the drop to a 
minimum in the ratio is sharper and to a lower value, while for 
zx > H the shape of the curve is smoother. In all cases Te(t, zx) 
is several tens of percent larger than T(zx) at times several 
times greater than T(zx). Calculations also show that 7•e(t)/7• 
behaves similarly to Te(t, H)/T(H). 

If Te is calculated from the drop in rn(t) from time tx accord- 
ing to (6), then for times past the minimum in Figure l, Te(t, z, 
tx) is greater than Te(t, z). For times significantly greater than 
tx, Te(t, z, tx) - T(t, z) appears to approach a constant value. 
For example, for z = H and tx = I-I•/K, this constant equals 
about 0.28. Residence times calculated by using the ex- 
ponential approximation with an initial time tx > 0 also tend 
to be too large simply because they are based on the right-hand 
portion of Figure 1. 

The results here are scaled so as to be independent of the size 
of the diffusion coefficient K. Note also that the effective mean 

velocity of the particle -K/H is equivalent to a negative mean 
medium velocity V in a uniform density medium. If the density 
drops off with z and there is a mean velocity V as well, then 
K/H - V replaces K/H in (1). In this case the size of K does 
affect the results. 

A more complicated situation arises when K varies in space. 
One case only is treated here: K(z) = K for z > zt, where K is a 
constant, and K(z) = rK for z < zt, where the ratio r is a 
constant. This situation might correspond to a troposphere 
with a high diffusion coefficient and a stratosphere with a 

lower one, with the transition point zt corresponding to the 
tropopaus6. In such a case the ratio r might be 10-100. 

A particle released at height zx > zt spends an average time 
(zx - zt)H/K before first reaching zt, an average time [1 - exP 
(-zt/H)]Ha/K above zt after first reaching zt, and an average 
time ztH/(rK) - [1 - exp (-zt/H)]Ha/(rK) below zt. If H is 
different below zt, then an appropriate value would apply in 
the last expression. (These expressions may be calculated by 
setting up appropriate boundary value problems. Namely, for 
the average time before first reaching zt, zt is taken as an 
absorbing barrier (see (4)); for the average time below zt the 
particle begins at zt, and zt is taken as a reflecting barrier; and 
for the average time above zt after first reaching zt the latter 
time with r = 1 is subtracted from the residence time T(zt). The 
expressions are based on the assumption that the size of the 
diffusion movements is small in comparison to zt. Otherwise 
the time spent by a particle in the system after first reaching zt 
would be reduced.) If H = 6 km and K = 36 km • yr -x, a 
particle released 6 km above the tropopause (zt • 2H) would 
on average spend 1 year in reaching the tropopause, about 1 
year in the stratosphere after first reaching the tropopause, and 
a few weeks or months in the troposphere. 

For this situation, calculations show that when the particles 
are initially significantly above zt (at a single position, say zt + 
H, or distributed according to exp (-z/H) above zt only), the 
exponential approximation gives results similar to those for 
the case with constant K. When the tracer particles are initially 
below zt (all at, say, •zt or distributed according to exp (-z/H) 
for all z), then at times much greater than the actual residence 
time the exponential approximation gives a significant over- 
estimate (by a factor of 3 or 4) of the residence time. This is 
true because some particles move above zt and, owing to the 
slower rate of diffusion there, have a longer characteristic time 
to reach z=0. 

Another important situation is when rainout occurs. Calcu- 
lations based on the model here show that if the average time 
before rainout in a region is small in comparison to the resi- 
dence time of particles entering the rainout region, then the 
rainout region may be accurately treated as an absorbing 
barrier. If the bulk of the particles are initially in the rainout 
region, then the previous comments in reference to a high K 
region apply. 

In summary, within the context of the simple model used 
here the exponential approximation usually gives results accu- 
rate to within a few tens of percent when it is used to calculate 
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Fig. 1. The ratio Te(t, H)/T(H) (the ratio of the residence time at z = H calculated by using the exponential 
approximation, to the actual residence time) as a function of t/T(H) (the time measured in units of the actual residence 
time). 
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residence times. The most common inaccuracy will be an 
overestimation of the true time, especially when the initial time 
in the calculation is taken to be later than the time associated 
with the original distribution of tracer particles. 

TRANSFER TIMES (AND TIMES FOR 
INTERHEMISPHERIC MIXING) 

Consider a one-dimensional system uniform in the region 
-0.Sa < y < 0.Sa with reflecting barriers at each end. Let the 
diffusion coefficient be a constant value K, so that the concen- 
tration c of a tracer substance is determined by 

c9c/•9t = K •:c/•y: (7) 

Such a system might represent an idealized atmosphere, where 
y = 0 corresponds to the equator and y = +0.5a to the poles. 

The probability density for the time t before a particle at y = 
yx reaches y = 0 is 

- - n exp .... 
a 

ß Isin (•r_•)_+. sin (;n(a--Y•))l (8) a 

Multiplying this expression by t and integrating over t from 0 
to oo gives the average amount of time T(y•) that the particle 
spends before reaching y = 0. This is a type of residence time. 
If particles can also leave the system, e.g., by rainout or 
diffusion perpendicular to the y axis, then T(y•) is averaged 
over only those particles that reach y = 0 before leaving the 
system. This is a type of transfer time [Martin, 1976]. 

Suppose we wish to use the exponential approximation to 
determine T(y•). Starting at a particular time t = 0, we mea- 
sure the time-varying masses m•(t) and m:(t) in the respective 
regions y < 0 and y > 0. The masses are assumed to change 
according to 

d•l •2 • •1 d•2 ml • m2 
= - (9) 

dt Te dt Te 

The value Te that best reproduces the observed changes in 
mass is called an interhemispheric mixing time [e.g., Peirson 
and Cambray, 1967; Fabian et al., 1968; Peirson, 1969]. Ac- 
cording to (9), the interhemispheric mixing time apparently 
should be an approximation to the corresponding transfer 
time. For example, if m: = 0, say, because of rainout, then Te 
will correspond to a residence time (a special case of a transfer 
time) for the mass rn•. 

Accordingly, to compare the transfer time with the value 

obtained using the exponential approximation, we determine 
T•(t, y•) from (for y• > 0) the solution to (9): 

m•.(t)- m•(t)_ m•.(O)- m__!(O ) exp (' me(t)-}' m,(t)- me(O)-}- m,(O) (10) 

In Figure 2, T•(t, 0.25a)/T(O.25a) is plotted as a function of 
t in units of T(O.25a). There is a noticeable resemblance to 
Figure 1, with, however, a difference of a factor of about 2. 
Apparently T• in this case refers to a different quantity from 
the average time required for a particle to move from y = y• to 
y = 0. (Note that the average time required for a particle to 
move from y• to -y• in general does not equal 2TLv•), so that it 
is not necessarily convenient to associate T• with particle tra- 
jectories from yx to -y•.) 

It might be argued in retrospect that there is no reason to 
expect a correspondence between TeLvx) and TLv•). If this is the 
case, then the point to be made here is that the meaning of 
times calculated using the exponential approximation may not 
be easily interpretable from the equations, such as (9), used to 
obtain them. 

ß 

Similar results are obtained for T•(t, y•)/T(y•) for y• 9 
0.25a, the sharpness and depth of the minimum being in- 
creased for small y•. Results closely similar to those in Figure 2 
are obtained if the volume associated with each position varies 
as cos Ory/a), which corresponds to the variation in atmo- 
spheric volume with latitude. The results are also similar if the 
initial distribution of tracer particles is proportional to the 
volume for, say, y > 0 (one hemisphere) and if there is a mean 
wind (say, away from y -- 0). 

Consider now the case in which particles continuously leave 
the system as well as diffuse in the y direction. The transfer 
time TLv•) will be decreased, since particles taking longer to 
reach y = 0 are more likely to be removed from the system 
first. On the other hand, the solution (10) is unchanged. If, for 
example, the average time for rainout or diffusion out of the 
system equals TLv•) (calculated without such removal), then 
TLv•) will be reduced by about a factor of 2. In this example, T• 
typically would be about 4 times as large as T. It might be 
argued that T• refers to a mixing time which assumes that exit 
from the system does not occur. This is a reasonable inter- 
pretation if the removal process is rainout or diffusion (in the z 
direction) which does not interact with the diffusion in the y 
direction. If the diffusion processes in the two directions inter- 
act (e.g., through spatially varying diffusion coefficients), then 
it is not obvious what T• refers to. 

In summary, interhemispheric mixing times calculated by 
using the exponential approximation have the same general 

Te 
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Fig. 2. The ratio Te(t, 0.25a)/T(O.25a) (the ratio of the transfer time from y, = 0.25a to y = 0 calculated by using the 
exponential approximation, to the actual transfer time) as a function of t/T(O.25a) (the time measured in units of the actual 
transfer time). 
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characteristics as residence times so calculated, except for 
being in addition roughly twice as large as the corresponding 
transfer times. 

CONCLUSION 

When residence and transfer times are calculated by using 
the assumption of exponential variation of mass with time, 
care should be taken. The calculations here show that depend- 
ing on the circumstances, times so calculated may be system- 
atically inaccurate, as in the case of residence times, and also 
apparently may refer to a different quality from that suggested 
by the equations used to calculate the times, as in the case of 
transfer ,times. The work here indicates that simple models can 
be used to estimate the applicability and accuracy of the ex- 
ponential approximation. 
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