COMPARING METHODS FOR MODELLING DISPERSION IN FLOWING MEDIA

Brian Martin and Nick Stokes

ABSTRACT. There are several available methods for the modelling of
dispersion in flowing media, including analytical representations of the
diffusion equation, numerical representations of the diffusion equation
and compartmental models involving the use of lumped parameter ordinary
differential equations. A technique is presented for comparing solutions
generated by these different methods., By equating the low order moments
of the first-passage time of the diffusing substance in the different
methods, relationships are obtained between the parameters in the
different models. The relationships are shown to be a good indication
that the solutions generated by the different methods are indeed closely
similar.

1. Introduction.

There are a number of different methods available for the modelling
of dispersion in flowing media. The standard approach is to repreéént the
movement and spreading of the flow or of a tracer by a diffusion equation.
Solving the diffusion equation analytically is occasionally possible
(Crank, 1956; Carslaw and Jaeger,1960), but usually a numerical solution
is required. Most commonly used methods of solution are finite
differences (see Richtmyer,1957; Forsythe and Wasow, 1960), variational
methods (Price et al.,1968; Guyman et al.,1970), and Monte Carlo methods
(Haji-Sheikh and Sparrow, 1967; Sklarew et al,,1972)., A good review of
these and many other possible approaches is given by Boley (1972).

Another approach to modelling dispersion in flowing media involves
the use of multiple lumped parameter ordinary differential equations,
each representative of behaviour in a fixed spatial compartment or cell
of the flowing media (Buffham and Gibilaro, 1970; Whitehead and Young,

1975); once again these equations are usually solved numerically.

The existence of two apparently unrelated analytical formulations
for modelling dispersion - the diffusion equation and the lumped parameter

model - as well as numerical formulations which are different from the

analytical formulations in significant ways, provides the motivation for
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the determination of relationships between parameters in some of the
different models for dispersion in flowing media. The following
approach will be used. For each model considered, the low order
moments of the first-passage time of the tracer will be determined at
a particular place downstream from a pulse input.* By equating
corresponding low order moments for solutions generated by the
different methods, relationships between the parameters used in the
different models often can be obtained. If the distribution of first-
passage times ge;erated by the dispersion process is characterised by
its low order moments, then solutions obtained using different methods

with appropriately corresponding parameters will be closely similar.

Not all numerical methods are tested and compared here. For some
of the more complex models, the analysis would be extremely difficult.
The rationale for dimiting the analysis here is twofold. First, the.
simple models used give an indication of the general character of the
relationships between parameters that may be obtained. Second, by
demonstrating the comparison procedure, more elaborate models can be

analysed when the need arises.

2. Moments of the Analytical Solution.

Consider the concentration c(x,t) of a diffusing substance in
one dimension, as a function of the distance x and time t. In

differential form the generalised diffusion equation may be written

@ i i
dc (-1) 3¢
1) _— = 3 M, — .
at 1Z=1 oMo

M, describes the change in the ith order spatial moment of the soclution

i
to (1). That is, given an impulse source at x = 0, ¢ = 0, the ith

* The firat-passage time for an infinitesimal element of the diffusing
substance is the time it takes for that element first to reach a
particular place. The first-passage time for the tracer as a whole is
the average of the first-passage times for the infinitesimal elements
composing it (Feller, 1968). The first-passage time can easily be
obtained from the solution to the diffusion equation in the presence

of an absorbing barrier; since such solutions exist, first-passage times
Tare obviously compatible with the property of the simple diffusion
equation - with no boundaries - which indicates that a signal is
transmitted to infinity instantaneously.
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spatial moment of the solution to (1) at time t is Mit. Only an

impulse source is considered here, and there are no spatial or temporal

variations in the Mi.

In the most common cases in which the diffusion equation is used,
only Ml and M2 are nonzero. In more conventional notation, Ml Z u,
the mean velocity of the medium, and %Mz = D, the diffusion coefficient,

so that (1) becomes

c 82 ac

-pdc_  3c
2 Ty Bl
9x

[-%]

The object here is to calculate the moments of the first-passage

time at position x = x. from a point source at x = 0. Multiplying

0
each side of (1) by t® and integrating over all time t, and noting that

L

(3) u; =-f cx,t) t° dt
0

is the nth non-central moment at position x, (1) becomes
i
@ i Bu'
(-1)" n

- ! =
(4) LMD D 1
i=1 9x

Given u; as a known function of x, (4) can be used to calculate all

higher moments. For an absorbing barrier at any point x,

L]
[

(5) n

o -

In other words, all diffusing particles are at position x exactly
once (i.e. when they are absorbed). Using (4) and (5), noting that
by the initial condition ua = GnO for x = 0, writing M. = u and

%Mz = D, and converting to central moments, it is easy toldetermine that
(6) W o= ;9 ,
€)) v, = 2D:0 ’
u
(8) uy = :—g (120? - L)
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Note that it is not necessary to know the analytical solution to

(1) in order to obtain expressions (6)-(8).

3. Moments of a Numerical Solution.

Numerical solutions to the diffusion equation (1) may not have the
same moments as the analytical solution. This is due to various in-
accuracies, such as spurious diffusion which results from finite difference
approximations of the term in 3c/3x. Therefore it is useful to calculate
the moments of a numerical solution to see if they are the same as those
of the analytical solution. If they are not, it may be possible to
adjust certain parameters in the numerical algorithm to make the
corresponding moments equal, and thereby improve the accuracy of the

numerical solution,

Here the moments for only one general type of numerical solution
are calculated in terms of the numerical parameters. Divide the x-axis
into a set of boxes, with box i =0 centred at x =0 and box i =N
centred at x = xo. The length of each box then is Ax = xO/N. In a
time interval of duration At, 1let a fraction p of the mass in box i
move to box i-1, a fraction q of the mass in box i move to box i+l,
and the remaining fraction r = 1l-p—q of the mass remain in box 1i. The

fractions p, q, and r thus are transition probabilities for the mass

in box 1 for the time interval (t, t+At).

Depending on the values of p, q, and r, this numerical re-
presentation is equivalent to some variational method representations of
the diffusion equation, and to explicit finite difference representations
of the diffusion equation. This can be seen readily by writing these
representations in transition probability form. For example, for the
diffusion equation (2), a standard explicit finite difference approxi-

mation using a centred difference for the term in 3c/9x gives

(9) P= ——%5 — 95 7o
(Ax)z 2 Ax
(Ax)
(11) r=1-2-285
{Ax)
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The moments of the numerical solution resulting from the transi-
tion probability representation are the moments of the first-passage time
at box N for a unit mass starting at box 0. These moments may be
calculated via the generating function for the arrival time at box N.
Using the technique in Feller (1968, pp. 349ff), one can determine
that the generating function for the first-passage time of the random

walk is

1-rs-(1-2rs-(4pg-r2)s2) ? )
(12) U(s) = ;ps pPq-r Js X

The un-normalised and non-central moments of the first-passage time are

given in terms of derivatives of U(s), as follows.

<U(n) (l) = %I s=l>:
ds

13) by = U
14) w=vWa,
(15) wy = 0P+ 1P,
(16) = 1P Pe P .
Evaluating (13) - (16) and converting to central moments, it is

found of course that Hg = 1 (all diffusing particles are absorbed

exactly once at xo) and that

) N

“r 17
B
(18) p2 =N.-_-—_.~3 ,
(q-p)
387 2B
(19) u3=N——-—-—5+—-—:L3>,
(q-p) (q~p)
where
2
(20) B = qtp - (q-p)” .
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Using these expressions, one can determine the moments of the
solution generated by a number of simple numerical algorithms, for
example from explicit finite difference formulations. These moments can
then be compared to the moments (6) to (8) of the analytical solution.
(The sets of expressions (6) to (8) and (17) to (19) are identical when
At and Ax approach 0, at least for any numerical approximation -
such as (9) to (11) - consistent with the partial differential equation
being modelled.)

Alternatively, one may equate corresponding moments of the
analytical and numerical solutions, and determine expressions for

P> g, and r. Equating corresponding moments u' from (6) and (17) and

1

) from (7) and (18) and solving for P and q, it is found that
(21) I (1 B %)

(8x) x x

DAt udt ult
(22) p=—"%5 +5—1/[-1+ »

(Ax)z Ax Ax
@ eo1 o 20e (uﬁ)z

(ﬂx)z Ax

The solution generated by the numerical algorithm with transition
probabilities p, q, and r determined as above will have the same
moments ui and My
well-behaved distributions are well characterised by their low order

as the analytical solution. Since reasonably

moments, it is expected that a numerical solution generated with this
procedure will be more accurate than other similar numerical solutions.

This expectation is tested and confirmed in the next section.

4.  Comparison of Numerical Solutions.

To illustrate how different numerical algorithms may be compared
by inspecting the moments of the numerical solutions, presented here are
results of some tests of selected representations. First, the
representations are described, and then the particular tests and the
results obtained. For 1llustrative purposes and convenilence, the
analytical solution is assumed to be a solution to the diffusion

equation (2).

Three numerical representations are tested which are based on the
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differential form of the diffusion equation, and which utilise finite
differences. Grid points separated by the distance Ax are assigned to
the x-axis, with one point at the origin. The change in the con-
centration at each grid point is calculated with each application of the

specified algorithm.

First write the diffusion equation (2) in the form

dc _
(24) 3 = F(t,c) .

Using simple finite difference approximations for the spatial

derivatives in (21), the operator F(t,c) becomes

F(t,c) = (c(xtdx,t) - 2c(x,t) + c(x-bx,t))

D
7
(25) (8x)

- 3%;-(c(x+Ax,t) - c(x-Ax,t)) .

Algorithms I, II, and III result from the following approximations

for 23c/3t in (24):

I. Point-slope formula:

(26) c(t+At) = c(t) + At F{t,c(t))

II. Crank-Nicolson implicit method formula:

@7 c(e+ht) = c(t) + %At (F(t,c(t)) + F(t+At, c(t+at))) .

III. Fully implicit method formula:

(28) c(t+At) = c(t) + At(F(t+At, c(t+at))) .

Note that Algorithm I may be cast into an integral representation of the

diffusion equation, with transition probabilities given by (9) - (11).

By specifying the following transition probabilities, an

algorithm based on the integral form of the diffusion equation is obtained:

(1v)

DAt udt
(29) p=—2+max<0,—ﬂ> .
(Ax)
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(30) q= -——Dm:z + max < : _uﬁ_}({:) X
(ax)

(31) R e -
(8x)

This algorithm guarantees that no negative masses are produced due to
subtracting the advection term uAt/Ax. It is also equivalent to the use
of an uncentred upstream difference scheme to approximate dc/3ax, with

the point-slope approximation for the time derivative 3c/3t.

Algorithm V is one that produces the same zeroth, first, and
second moments as the analytical solution at the sample point specified.
The equations frow which the transition probabilities may be obtained
are given above in {Z1) - (23). These transition probabilities are
identical to those obtained by Martin (1975) by equating the changes in
the low-order spatial moments of the solution c(x,t), such changes
being cbtained from the diffusion equation and the numerical algorithm.
Equations (21) - {Z3) also correspond to a numerical algorithm obtained
by using the Lax-Wendroff approximation for advection and the simple

centred difference scheme for diffusion (Runca, 16756).

The firal algorithm is a simple one based on a lumped parameter

ccmpartmental model.

To compare the numerical solutions, the low-order moments of the

first-passage time up to are calculated from a numerical simulation.

o
{In cases where the moment53could be calculated analytically by the
technique in Section 2 above - all algorithms except Il and III - these
agreed with the moments obtained by numerical simulation.) Since the

low order moments do not completely characterise a distribution*, it is
revealing (and convincing) to provide a measure of goodness of fit of the
analytical and numerical solutions in the time domain. A simple and
straightforward measure is used here: the sum of the square of the

differences between the analytical and numerical solutions, calculated at

the final box or grid point N. This sum of squares 1s denoted L.

*  Low order mements usually will characterise well a non-bumpy
distribution; two separated delta functions, for example, would not be
well characterised. However, the numerical procedures tested here
will be applicable as long as the distribution is reasonably smooth
within boxes.
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Table 1

Values of the moments of the first-passage time and values
of a measure of goodness of fit for several selected solutions
to a dispersion problem with

DAL - 0.2, Yo 0.2, w=10.
(4x)
L }
Y ¥y gy Mg L
Analytical solution 1.000 50.0 500. 15000. -
Numerical solutions
I 1.000 50.0 450. 12300. .000041
11 1.000 50.5 499.8 13720. .000032
I1I 1.000 51.0 550. 15300. .00011
v 1.000 50.0 700. 30300. .00039
\ 1.000 50.0 500. 15300. .0000015
Lumped parameter
model solution 1.000 50.0 500. 10000. .00023
Table 2

Values of the moments of the first-passage time and values of
a measure of goodness of fit for several selected solutions to
a dispersion problem with

DL~ 0.2, B g4, N =10,
(ax)
v
Yo u My My L
Analytical solution 1.000 25.0 62.5 469. -
Numerical solutions
I 1.000 25.0 37.5 150. .0021
II 1.000 25.5 62.2 300. .00051
II1 1.000 26.0 87.5 525. .0016
v 1.000 25.0 100.0 1370. .0018
\ 1.000 25.0 62,5 525, .000049
Lumped parameter
model solution 1.000 25.0 62.5 312, .00025
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Table 3

Values of the moments of the first-passage time and values
of a measure of goodness of fit for several selected
solutions to a dispersion problem with

B - 0.2, B4, N = s,
(8x)
1]
vy ¥y Hy L) L
Analytical solution 1.000 125. 312.5 2340, -
Numerical solutions
I 1.000 125, 188. 750. .00089
11 1.000 125.5 312.2 1500. .000044
i1 1.000 126. 438. 2620. .00039
w 1.000 125. 500. 6840 .00062
v 1.000 125. 312.5 2620 .0000025
Lumped parameter
model solution 1.000 125. 312.5 1560. .000018

Sample results are presented in Tables 1-3 for different values
of D, u, and N. It is readily seen that Algorithm V which gives the
same low order moments as the analytical solution, gives the highest

accuracy of the set of algorithms tested.

There are several other ways in which numerical representations
may be evaluated: ease of generation and computation, stability, non-
negativity of concentrations, and mass conservation. These Ccriteria,
and the degree to which the different algorithms satisfy them,are
discussed in Martin (1975). For example, algorithms IV and V are stable

if p,q, and r are non-negative and have a unit sum.

S.  Moments of Lumped Parameter Compartmental Solutions.

Buffham and Gibilaro (1970) present a unified comparcmental
"time-delay” model for dispersion in flowing media. This unified
model contains five parameters, and for special choices of these reduces
to a number of simpler models, referred to by Buffham and Gibilaro.
Therefore 1t is appropriate to compare the moments calculated by Buffham

and Gibilaro for the solution generated by their model with the moments
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(6) - (8) of a diffusion equation solution. But first a description

of their unified "time delay” model is called for.

The cell form of the model is presented in Figure 1.

F(s)

axg/N

v

— > - — — — — — — — —

Q N
1 2 i N

Figure 1. Compartmental model.

The main flow path is represented by N well-mixed cells. Lateral

flow is at a rate of qu/N per box, and the distribution of delay times
in the lateral zones is characterised by the transfer function F(s),
where s 1is the Laplace variable. The throughput flow rate 1s Q and

the total volume of the main flow path is V.

As a most general delay time distribution Buffham and Gibilaro

suggest the gamma distribution with transfer function
¥ tDS —m
(32) F(s) = T + 1 .

They show that for this distribution the moments of the arrival time are

1
(33) ¥ =ty toaxgt,,
=ax, @+ 3?4 Lee vax ¢ )2

(34) Y2 T %% m’ D N0 oty

1 2,3 .3 1 2
(35) Mg = axo(l + ;) aa+ ;) tD + N(l + m) axo(t0+ux0tD)tD

2 3
+ ;E (t0+ux0tD) R

where ty = V/Q and o = q/q.
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Given a particular model of this type, with parameters
to, a, N, tD’ and m, it is easy to6 calculate the parameters
Ml, MZ,... of the diffusion equation whose solution has the same
impulse response, by equating the corresponding moments. Working in
the other direction is not so easy. Because Buffham and Gibilaro's
model has 5 parameters, moments up to the fifth order would need to be
determired in order to specify all of them. Therefore it is useful to
consider a special case of their modei, obtained by eliminating the
lateral zonmes in Figure 1. This model is equivalent to solving a set
of N input-output mass conservation equations of the form

de

(36) y - -Qe, + Qe

d 1-1°

where <y is the output concentration, i.e. the concentration in a

given cell, and ci_1 is the input concentration, i.e. the concentration
in the cell upstream from the given cell. This model is equivalent to a
§et of continuous stirred tank reactors (CSTRs) (see Whitehead and Young,
1975). Each input-output equation of the form (36) does not explicitly
include mixing. Dispersion in the solution arises from the exponentially

time delayed distribution ¢ that results from each input c, 1°
i-

The moments of the arrival time at position X of the solution
to N equations of the form (36) are simply determined from (33) - (35)
by setting a = 0. This gives

37) -
ul to,
(38) t02
H2 T -
2t 3
(39) by = 0
N2

Comparing these to (6) - (8) it is found that the solution to (36) has the
same low order moments as a solution to the diffusion equation (1) which

has parameters

(40) u=-9
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2
0
(41) p=-0_
2t N
L3
(42) M, L
3T T2
0

It is also simple to determine the parameters for a CSTR model
which will result in a given mean velocity and dispersion. From (40)

and (41),

X
Y
(43) tg =3
ux
ezl
(44) N=—.

In many problems it is useful to use the CSTR model, since other
processes may be simply included and certain types of analysis easily
made. (43) and (44) tell one the values of to and N that should be
used if one wishes to model a certain mean flow and dispersion.
Similarly, other such compartmental models may be superior to diffusion

formulations in certain circumstances {(Buffham et al.,1970).

The lumped parameter model tested in the previous section is
a CSTR model with parameter tO and N taken from (43) and (44). The
agreement, indicated by L, between the solution to the diffusion
equation and the lumped parameter model solution is good, indicating
that relationships such as (40) - (42) or (43) - (44) will usually
imply a close similarity between the solutions generated by the
different models. Lumped parameter compartmental models can be con-
sidered to be independent mathematical models for the physical processes
involved in flowing media; they are not necessarily intended to be
approximations to diffusion equations. Therefore the L values in the

previous section might just as well represent the divergence of the
solution to the diffusion equation from the lumped parameter model
solution.

Although the agreement is good between the solution to the
diffusion equation and the lumped parameter model solution with
corresponding parameters, this will not necessarily be true for

numerical solutions to the lumped parameter model; for such numerical

solutions, new parameter relationships might be obtained via the
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technique in Section 3. The basic point here is that whenever a
different method for modelling diffusion is introduced, whether via

a different analytical model or a numerical solution, it is valuable to
look at the relationships between the models in terms of the low order
moments of the solutions which they generate. Such relationships can

be used to translate one analytical model into another, to investigate
the accuracy of a numerical approximation, and in some cases to generate

an algorithm specially suited for the problem at hand.
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