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Mathematics is a product of society and it can
both reflect and serve the interests of particular
groups. The connection between mathematics and
interest groups can be examined by looking at the
social construction of mathematical knowledge and
by looking at the social system in which math-
ematics is created and used.

Scientists have long believed that scientific knowledge
is knowledge about objective reality. They commonly dis-
tinguish their enterprise from religious or political belief
systems, seeing scientific truth as unbiased. This belief
system has always had difficulties with certain appli-
cations of science such as nuclear weapons. The usual way
in which the belief in the purity of science is maintained is
by distinguishing between scientific knowledge and its
applications. Scientific knowledge is held to be pure while
its applications can be for good or evil. This is known as
the use-abuse model.

This standard picture came under attack in the late
1960s and early 1970s. Radical critics argued that science
is inevitably shaped by its social context. For example,
funding of pesticide research by the chemical industry
arguably influences not only what research topics are
treated as important but also what types of ecological
models are considered relevant for understanding agricul-
tural systems. Many critics argued that the key motive
behind science is profit and social control (Rose & Rose
1976a,b Arditti et al. 1980).

The political critics of science drew on and stimulated
dramatic changes in the study of the history, philosophy
and sociology of science. Thomas Kuhn (1970) opened the
door with his concept of paradigms, which are essentially
frameworks of standard ideas and practices within which
most scientific research proceeds. When a paradigm is
overthrown in the course of a scientific revolution, the
criteria for developing and assessing scientific knowledge
change. The implication is that there is no overarching
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rational method to decide what is valid knowledge: scien-
tific knowledge depends, on some level, on the vagaries of
history and culture.

Sociologists studying scientific knowledge have devel-
oped and filled out this picture. They have examined not
only the large-scale political and economic influences on
scientific development but also the micro-processes by
which scientists ‘negotiate’ what is scientific knowledge
(Barnes 1974, 1977, 1982; Bloor 1976; Latour & Woolgar
1979; Mulkay 1979; Knorr et al. 1980).

Most of this analysis has been communicated using
social science jargon in specialist journals and has had
relatively little impact on practising scientists. The only
philosopher of science taken note of by many scientists is
Karl Popper, and even his ideas are used more as a
‘resource’ in struggles over knowledge than as methodo-
logical aids (Mulkay & Gilbert 1981). Nowhere is this
more true than in mathematics.

What does it mean to talk about the relationship
between mathematics and social interests? It can refer to
the impact of social factors — such as sources of funding,
possible applications or prevalent beliefs in society — on
the content and form of mathematical knowledge, such as
on the choice of areas to study, the formulation of
methods of proof and the choice of axioms. Alternatively,
it can refer to the role mathematics plays in applications,
from actuarial work to industrial engineering. Finally, it
can refer to the social organisation of the production of
mathematics: the training of mathematicians, patterns of
communication and authority in mathematical work, pro-
fessionalisation, specialisation and power relations.

‘Interest’ here refers to the stake of an individual or
social group in particular types of actions or social
arrangements. An interest can be small-scale, such as the
personal advantage to a mathematician in publishing a
paper to gain tenure, or large-scale, such as the strategic
advantage to a military force in using an algorithm for
tracking missiles. ‘Social interests’ are those associated
with major social groupings such as social classes, large
organisations, occupational or ethnic groups.

My aim here is to survey some ideas bearing on math-
ematics and social interests. I approach the problem from
two directions. The first is via the sociology of knowledge.
Can sociological examination be applied to the creation
and elaboration of mathematical knowledge? What does it
mean to talk of the social shaping of mathematics? There
are some provocative studies in this area, but in my view
they do not lead by themselves to a comprehensive picture
which can be used to evaluate the role of mathematical
work in contemporary society.

The second path involves looking at the system of pro-
duction and application of mathematical knowledge, and
in particular at the use of expertise in modern society
and at the relationship between mathematical theory and
application.

Path One: Sociology of Knowledge

The sociology of knowledge attempts to explain the
origin and evolution of knowledge using the same sorts of
analysis which are applied to other phenomena, both
natural and social. The dynamics of knowledge involve
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social, economic, political, religious, biological and all
sorts of other factors. Rather than assuming that the
content and structure of knowledge is ‘given’ by logic or
the nature of reality — a transcendental explanation of
knowledge — the sociology of knowledge locks for more
mundane explanations.

David Bloor (1976) is a leading proponent of the
‘strong program in the sociology of science’, which aims to
investigate all knowledge using sociological methods. The
key features of the strong program according to Bloor are
that knowledge be explained in causal terms, that expla-
nations be impartial and symmetrical with respect to the
truth or falsity of the beliefs being explained, and that the
theory be applied to itself.

Bloor adopts an approach to mathematics based on
improving John Stuart Mill’s view that all mathematics is
ultimately based on physical models and human experi-
ences, such as the manipulation of pebbles which can be
seen as a motivation for arithmetic with natural numbers
(Bloor 1976, Ch. 5). The traditional obstacle to Mill’s view
is F. L. G. Frege’s point that mathematics seems to be
‘objective’: mathematical reasoning has a compulsion
about it which cannot always be attributed to a link with
physical models. To extend Mill’s theory, Bloor observes
that Frege’s definition of objectivity is equivalent to social
convention: mathematicians have institutionalised a set
of beliefs about the ways to proceed with the symbols they
work with. These institutionalised beliefs are rather like
rulesin a game: they must be adhered to. Bloor’s extension
of Mill’s perspective is that physical situations provide
models for certain steps in mathematical reasoning
(usually the more basic features) while mathematical con-
vention gives an obligatory aspect to these steps and
extensions of them. Mathematics thus deals not with
physical reality but with social creations and conven-
tions.

Bloor’s reconstruction of Mill’s position provides a
powerful basis for the sociological investigation of math-
ematics. Since the ‘law-like’ features of mathematical
reasoning are based on social conventions, then it is
natural to investigate how these conventions are created,
sustained and overturned.

Bloor investigates the history of mathematics to see
what happened to alternative conceptions of mathemat-
ics, dealing with issues such as whether one is a number,
Diophantine equations, and Pythagorean and Platonic
numbers (Bloor 1976, Ch. 6). His conclusion is that al-
ternative conceptions did exist, but that historians have
relegated them to the historical rubbish bin of ‘non-
mathematics’. In this way only ‘genuine mathematics’
remains part of the history of mathematics, which thus
seems to be cumulative and without significant deviations
or alternatives.

Bloor also examines the ways in which mathematical
reasoning is socially ‘negotiated’, namely the practices
through which mathematicians develop agreed-upon
ways of using and interpreting the symbols and tools of
their trade, including criticism, argumentation, reclassifi-
cation and consensus (Bloor 1976, Ch. 7). Bloor gives
among other examples the case of the negotiation, over
the years, of the proof of the formula E+ 2=V + F
relating the number of edges, vertices and faces of a polyg-
onal solid.

Bloor’s program is a powerful one. It opens the foun-
dations of mathematics to sociological examination by
allowing the ‘objectivity’ of mathematical reasoning to be
seen as fundamentally social in nature. But Bloor does not
extend his analysis to address the relation between
mathematics and social interests. Even if it is accepted
that the formula E + 2 = V + F depends on somewhat
arbitrary agreements among mathematicians rather than
being inherent in the nature of polygonal solids (or the

mathematical concept of polygonal solids), that does not
provide much insight into whether the social negotiation
of the formula owes much or provides special benefits to
particular groups in society.

At this stage it is worth while to spell out the different
channels through which the form and content of math-
ematics can be shaped by society. Social interests can be
connected with the choice of areas of mathematics to
study, the interpretation of mathematics and the devel-
opment of mathematical frameworks.

The choice of mathematical areas to study Differ-
ential funding or the availability of applications can affect
the opening of branches of study and the prestige of
different subjects. For example, the field of operations
research grew out of military applications of mathematics
during World War II and the strength of the field is
maintained by continuing military interest.

Luke Hodgkin (1976) argues that the great surge in
the ‘mathematics of computation’, which encompasses
numerical analysis and parts of computer science, is con-
nected to the development of the needs of contemporary
capitalism plus the availability of suitable technology for
computing (such as transistors and now chips). He points
out that the mathematics of computation is not a simple
‘reflection’ of the economic system, as a simplistic Marx-
ist account might suggest. Instead, the influence of the
system of economic production is mediated through the
social institutions of science, whose organisation pre-
dated the great growth of computational mathematics.

Choice in mathematical research is also involved at the
detailed level of application. Partial differential equations
can be applied to many problems; the particular sets of
equations which are selected out for formulation and sol-
ution can be influenced by applications, which in turn are
linked to social interests.

The interpretation of mathematics In many cases,
especially in applied mathematics, mathematical con-
structions are chosen because they have desirable physical
or social interpretations.

An example here is Paul Forman’s (1971) study of the
effect of Weimar culture on the development of quantum
theory. The most important strides in quantum theory
occurred in Germany in the decade after World War 1.
Forman documents the intense antagonism to rationality
which prevailed then in the Weimar Republic. Since caus-
ality was identified with rationality, physicists came
under pressure to renounce their traditional allegiance to
causality. Forman suggests that this pressure led the
quantum physicists to search for, or at least latch on to, a
mathematical formalism which could be interpreted as
non-causal. In crude terms, the acausal Copenhagen
interpretation and its associated mathematical frame-
work were adopted because they looked good publicly.

Forman’s study is quite relevant to mathematics, since
theoretical physics constitutes the foremost application
of mathematics. The case of quantum theory is intriguing
because, in the decades since the establishment of the
orthodox or Copenhagen interpretation, a number of
alternative interpretations have been put forth. Some of
these use the same mathematical formulations, but
interpret their physical significance differently, while
others use different mathematical formulations to
achieve the same or different results.

® The statistical interpretation favoured by Einstein uses
the same mathematics (Ballentine 1970).

® The hidden variable interpretation, a determinist
approach, formulates the equations somewhat differ-
ently and, optionally, can give different results from the
orthodox theory by addition of an extra parameter
(Bohm 1952).
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e The splitting universe interpretation is a different in-
terpretation of the same mathematics (DeWitt 1970).

e The ‘realist’ interpretation, which gets rid of the inde-
terminist element in quantum theory entirely, uses a
different mathematical approach to achieve some of the
same basic results (Landé 1965).

The existence of these interpretations or reformu-
lations of quantum theory add support to Forman’s analy-
sis. At the least, the interpretation of the equations of
quantum theory as supporting indeterminism was not
required by the equations themselves. Furthermore, it
seems possible that many of the achievements of the
theory might have been accomplished using a somewhat
different mathematical formulation, which could well
have been difficuit to interpret indeterministically.

So strong was the commitment to indeterminism that
physicists accepted without question John von Neu-
mann’s proof in the 1930s that no hidden variable theory
could be constructed. Although Bohm demonstrated such
atheoryin 1952, it was not until the 1960s that the flaw in
von Neumann'’s proof was exposed (Pinch 1977).

In my experience, most physicists do not worry greatly
about what quantum theory ‘means’ but simply use the
mathematics in a pragmatic fashion. Indeed, one of the
‘crisis points’ commonly experienced by physics students
is when they give up their increasingly uncomfortable
attempts to understand what the theory really means and
instead just accept it, usually by sweeping their doubts
under the carpet. Most historians and textbook writers
have accommodated this process, as Bloor has argued
about mathematics history, by exorcising alternative
interpretations as unsuccessful, irrelevant or nonexis-
tent.

the game gives results which legitimate those very same
values. Game theory in this situation provides a ‘mystify-
ing filter”: values are built into an ostensibly value-free
mathematical framework, which thus provides ‘scientific’
justification for the decision desired. Arguably, game
theory has become popular because its mathematical
framework makes it easy to use in this way.

The above-mentioned studies and others (Thomas
1972; Ogura 1974; Bos & Mehrtens 1977; MacKenzie
1978; Mehrtens 1987; for a comprehensive survey and
analysis see Restivo 1983) show how the social context,
such as economics or belief systems, can influence the
areas of mathematics which are opened up and made
fashionable, the types of theories which are developed,
and the particular mathematical formalisms which are
formulated and used. These are examples of the impact of
social factors on mathematical knowledge, but they
hardly establish that all of mathematics is influenced in
these sorts of ways. To establish this would require many
studiesin the line of Bloor’s strong program, in an attempt
to whittle down the areas of apparent autonomy of math-
ematical knowledge. Only if the range of sociological
studies were very broad could the burden of proof be put
on those who claim that there are areas of mathematics
which are free of such formative influences.

Even if the strong program could be so developed, what
would it say about mathematics and social interests? The
existence of influences on the creation and adoption of
mathematical knowledge does not automatically mean
that knowledge preferentially serves particular groups in
society.

The studies in the sociology of knowledge initiate the
case that mathematics is connected with social interests,
by refuting the view that mathematical knowledge always

The development of mathematical frameworks
The choice of axioms, the types of theorems, the style of
proofs and a host of other facets of mathematics can be
shaped by factors such as views about the nature of social
reality.

An example here is game theory, a mathematical the-
ory which deals with conflict situations, originally devel-
oped to model economic systems (Martin 1978). Key
concepts of the theory include the ‘players’ in a game, each
of which has a number of ‘choices’, followed by ‘payoffs’.
The mathematical theory of games is built around deter-
mining the optimal strategies for making choices. The
players, choices and payoffs are usually assumed to be
fixed; competition is built in; payoffs tend to be quanti-
fiable. Hence, game theory is especially suited for appli-
cations which assume and reinforce individualism and
competition.

Game theory has been applied in many areas, such as
international relations. What often happens in practice is
that the values of the modellers are incorporated into the
game theoretic formulation, which usually ensures that

springs antiseptically from the nature of logic, from physi-
cal reality or from mathematicians’ heads. The limits of
sociological examination of mathematics remain to be
tested. Some such as Bloor (1981) think the prospects are
good while others disagree (Laudan 1981). In any case,
since most of the sociology of knowledge studies deal with
influences on the origin and development of mathematical
knowledge in earlier eras, they only partially address
concerns about the uses of present-day mathematics. To
pursue the case further, I turn to the second path.

Path Two: The Mathematics—Society System

This approach to looking at mathematics enters not at
the level of mathematical knowledge but at the level of the
social systems in which that knowledge is created and
applied. The social system of science refers to patterns of
employment, funding, communication, training, auth-
ority, decision-making and so forth. The aim here is to
look at the way systems of production and application of
mathematics relate to social interests. To do this I select
out some salient features of the social systems associated
with mathematical expertise.
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Sources of patronage Most of the money for math-
ematics research — which is largely for salaries, but also
for offices, libraries, computing and travel — comes from
governments and large corporations. The source of
funding inevitably has an influence on the areas of
mathematics studied and the types of mathematical
applications undertaken. As argued by Hodgkin (1976),
much of the stimulus for work in computational
mathematics also comes from actual or potential military
applications.

At the detailed level of application, the formulation of
mathematical problems is strongly influenced by funding
and opportunities for application. In manufacturing
industry, mathematical problems grow out of the need to
cut costs, improve technologies or control labour. A
mathematical model for the rapid cooling of a metal bar
without cracking is tied to an immediate problem. The
mathematics of light transmission in optical fibres is
driven by interest in application in telecommunications.
The number of examples is endless.

What happens in many cases is that a practical prob-
lem, such as modelling air pollution dispersion or the tra-
jectories of missiles, leads to a more esoteric mathemat-
ical project in numerical analysis or differential equations.
The applications, and thus the funding, in these cases
have an indirect influence on the type of mathematical
problems studied and thought to be ‘interesting’. That
particular types of parabolic partial differential equations
become whole fields of study in themselves is not due
simply to some abstract mathematical significance of
these equations, but to their significance in practical
applications, even if at several stages removed.

Professionalisation Today, most mathematicians —
taking a mathematician to be a person who creates or
applies mathematical knowledge at a high level — are
full-time professionals, working for universities, corpor-
ations or governments. There are few amateurs, nor do
many mathematicians work for trade unions, as farmers,
in churches, or as freelancers. Mathematics, like the rest
of science, has been professionalised and bureaucratised.
The social organisation of mathematics influences the
ways that ambitious mathematicians can pursue fame and
fortune (Collins & Restivo 1983).

Mathematicians have a vested interest in their salaries,
their conditions of work, their occupational status and
their self-image as professionals. Their preferences for
types and styles of mathematics are influenced by these
factors.

Judith Grabiner (1974) argues that there have been
‘revolutions in thought which changed mathematicians’
views about the nature of mathematical truth, and about
what could or should be proved’. Grabiner examines one
particular revolution, the switch from the 1700s when the
main aim of mathematicians was to obtain results to the
1800s when mathematical rigour became very important.
Of the various reasons for this which Grabiner canvasses,
one is worth noting here. Only since the beginning of the
1800s have the majority of mathematicians made their
living by teaching. Rather than just obtaining mathemati-
cal results for applications or to impress patrons, teachers
need to provide a systematic basis for the subject, to aid
students but also to establish a suitable basis for demar-
cating the profession and excluding self-taught competi-
tors from jobs. This is an example of how the social
organisation of the profession of mathematics can affect
views about the nature of mathematical truth.

Gert Schubring (1981) has argued that in the profes-
sionalisation of mathematics in Prussiain the early 1800s,
the ‘meta-conception’ of pure mathematics played an
important role. By defining ‘mathematics’ as separate
from externally defined objectives, the mathematicians

oriented the discipline to internal values which they could
control. To do this, support from the state had to be avail-
able first. Given state patronage for academic positions,
the mathematicians could proceed to establish a disci-
pline by establishing training which channelled students
into the new professional orientation, reducing the num-
ber of self-taught mathematicians obtaining jobs in the
field, and socialising students into the meta-conception of
pure mathematics. This account meshes nicely with that
of Grabiner.

This process continues today. Especially in universi-
ties, the home grounds of pure mathematics, mathemati-
cians stake their claims to autonomy and resources on
their exclusive rights, as experts, to judge research in
mathematics. This is no different from the claims of many
other disciplines and professions (Larson 1977). The
point is that if mathematicians emphasised application as
their primary value, their claims to status and social
resources would be dependent on the value of the appli-
cations and on the evaluations of other professionals in
the areas of application. The conception of ‘pure’ math-
ematics enables an exclusive claim to control over the
discipline to be made.

Herbert Mehrtens (1987, p. 160) develops the thesis
and ‘a scientific discipline exchanges its knowledge pro-
ducts plus political loyalty in return for material resources
plus social legitimacy.” He shows how German mathemat-
icians in the 1930s were able to accommodate the imper-
atives of the Nazis, especially by providing useful tools to
the state. The adaptability of the German mathematics
community grew out of its social differentiation, specifi-
cally the different functions of teaching, pure research
and applied research. Mehrtens’ study provides an excel-
lent model for analysing the interactive dynamics of the
two factors of patronage and the structure of the profes-
sion,

Male domination Most mathematicians are men, and
mathematics like the rest of natural science is seen as
masculine: a subject for those who are rational,
emotionally detached, instrumental and competitive.
Mathematicians are commonly thought, especially by
themselves, to have an innate aptitude for mathematics,
and claims continue to be made that males are biologically
more capable of mathematical thought than females. The
teaching of pure mathematics as concepts and techniques
separated from human concerns, plus the male-
dominated atmosphere of most mathematics research
groups, make a career in mathematics less attractive for
those more oriented to immediate human concerns,
especially women.

Male domination of mathematics is linked with male
domination of the dominant social institutions with
which professional mathematical work is tied, most
notably the state and the economic system. The connec-
tion operates through the education system, through state
and corporate funding and through professional and
personal contacts (Bowling & Martin 1985).

The high status of mathematics as a discipline may be
attributed in part to its image as a masculine area. Math-
ematical models gain added credibility through the image
of mathematics as rational and objective — characteris-
tics associated with masculinity — as opposed to models
of reality which are seen as subjective and value-laden.

Specialisation There are various ways in which math-
ematicians shape and use their expert knowledge to
promote their interests vis-da-vis other social groups. If
mathematical knowledge were too easy to understand by
others — both non-mathematicians and other mathema-
ticians — the claims by mathematicians for social
resources and privilege would be harder to sustain.
Specialisation enables enclaves of expertise to be estab-
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lished, preventing scrutiny by outsiders. In applications
work, specialisation ensures that only particular groups
are served. In all cases, specialisation plus devices such as
jargon prevent ready oversight by anybody other than
other specialists. Since hiring professionals to understand
specialist bodies of knowledge can be afforded on a large
scale only by governments and large corporations, special-
isation serves their interests more than those of the
disabled or the unemployed, for example.

The role of these factors is particularly obvious in
mathematical modelling. A mathematical model may be a
set of equations, which is thought to correspond to certain
aspects of reality. For example, most of theoretical
physics, such as elementary theory for projectiles or
springs, can be considered to consist of mathematical
models. In most parts of physics the models are con-
sidered well established, and physicists work by manipu-
lating or adapting the existing models. But in other areas
the choice of models is open. Various parts of the reality
may be chosen as significant, and various mathematical
tools may be brought to bear in the modelling process.

Many people who have been involved in mathematical
modelling will realise the great opportunities for building
the values of the modeller into the model. I have seen this
process at work in a variety of areas, including math-
ematical ecology, game theory, stratospheric chemistry
and dynamics, voting theory, wind power and econome-
trics.

A good example is the systems of difference equations
used in the early 1970s to determine the ‘limits to growth’.
The choice of equations and parameters more or less
ensured that global instability would result (Cole et al.
1973). When different assumptions were used by different
modellers, different results — for example, that pro-
motion of global social equality would prevent global
breakdown — were obtained, nicely compatible with the
values of the modellers. Another example is the values
built into the global energy projections developed at the
International Institute for Applied Systems Analysis
(Keepin & Wynne 1984).

Mathematical models are socially significant in two
principal ways: as practical applications of mathematics
and as legitimations of policies or practices. Most models

are closely tied to practical applications, such as in
industry. The narrow specialisation involved in the
modelling ensures that few other than those developing or
funding the application would be interested in or capable
of using the model. This sort of applied mathematics is
closely linked to the social interests making the specific
application. Whether the application is telecommuni-
cations satellites, anti-personnel weapons or solar house
design, one may judge the mathematics by the same cri-
teria used to judge that application. It is not adequate to
say that the killer is guilty while the murder weapon is
innocent, for in these sorts of applications the mathemati-
cal ‘weapon’ is especially tailored for its job. Certainly
applied mathematicians cannot escape responsibility for
their work by referring to ‘neutral tools’, whether this
refers to their mathematical constructions or to them-
selves.

Models serving as legitimations are involved in a more
complicated dynamic. In many cases such as limits-to-
growth studies the models do no more than ‘mathemati-
cise’ a conclusion which would be obvious without the

model. But the models are seen as important precisely
because they are mathematical, thus drawing on the
image of mathematics as objective. A mathematics-based
claim also has the advantage of being the work of profes-
sionals. Anyone can make a claim, but if a scientist does
s0, relying on the allegedly objective tools of mathematics,
that is much more influential. Although exercises in
mathematical modelling are often shot through with
biases, for public consumption this often overlooked; the
modellers draw on an aura of objectivity which is sutained
by the more esoteric researches of pure mathemati-
cians.

What then of pure mathematics? There are two major
ways in which a link to social interests can be made. First
is potential applications. These are not always easy to
assess, but a good guess often can be obtained by looking
at actual applications in the same or related specialities. If
any new application turns up, it is likely to be in the same
areas and to be used by the same groups.

It is a debatable point whether mathematics should
ever be evaluated separately from applications. Arguably,
the study of nature is the primary motivation for the
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development of and importance of mathematics, and the
‘correctness’ of pure mathematics should be judged by its
ultimate applicability to the physical world (Kline 1959,
1980). The primary reason for the ascension of pure
mathematics, namely mathematics which is isolated from
application, is the social system of modern science.

This system — including funding, professionalisation,
male domination and specialisation — in which claims to
sole authority over areas of knowledge are used to claim
social resources, is the second way that pure mathematics
is connected with social interests. Even if some bit of pure
mathematical research turns out to have no application, it
is still usually the case that social resources have been
expended to support professional workers who are mostly
male and who produce intellectual results of interest only
to a handful of others like themselves. Furthermore, the
work of pure mathematicians, and indeed their very
existence, helps legitimate the claims of mathematics to
objectivity.

Conclusions

The question, ‘What is the link between mathematics
and social interests?’, is usually answered in advance by
assumptions about what mathematics really is. If
mathematics is taken to be that body of mathematical
knowledge which sits above or outside of human interests,
then by definition social interests can only be involved in
the practice of mathematics, not in mathematics itself.
This Platonic-like conception sees mathematics as value-
free, but is itself a value-laden conception: it serves to
deflect attention from the many links between math-
ematics and society.

Most people would agree that nuclear weapons have
not been constructed to serve all people equally; particular
social interests are involved in designing, building, testing
and deploying nuclear weapons. But what of the uranium,
plutonium, iron and other atoms contained in nuclear
weapons? Are these atoms ‘value-laden’? A reasonable
stance in my view is that the atoms in themselves are not
linked to any particular groups — except the plutonium
atoms which were manufactured by humans — but that
the connection enters through the humanly constructed
configuration of atoms. The idea of a value-free atom in
isolation is all very well, but that is not what we encounter
in human constructions.

Elements of mathematical knowledge can be likened to
atoms, except that all mathematical concepts have been
created by humans. In isolation, the mathematical con-
cepts of an integral or a ring seem not to be associated with
the interests of particular groups in society. But math-
ematical concepts do not exist in isolation. They are
organised together for particular purposes, very narrowly
for detailed applications, more generally for teaching. The
more specialised and advanced ideas are mostly restricted
to a small segment of the population, which claims social
resources and status due to its expertise.

The belief that mathematics is a body of truth inde-
pendent of society is deeply embedded in education and
research. This situation, by hiding the social role of
mathematics behind a screen of objectivity, serves those
groups which preferentially benefit from the present
social system of mathematics. Exposing the links between
mathematics and social interests should not be seen as a
threat to ‘mathematics’ but rather as a threat to the
groups that reap without scrutiny the greatest material
and ideological benefits from an allegedly value-free
mathematics.
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