ETHNOMATHEMATICS

Challenging Eurocentrism in Mathematics Education

EDITED BY

Arthur B. Powell
and
Marilyn Frankenstein

State University of New York Press



Published by
State University of New York Press, Albany

© 1997 State University of New York
All rights reserved
Printed in the United States of America

No part of this book may be used or reproduced in any manner
whatscever without wriften permission. No part of this

book may be stored in a retrieval system or transmitted

in any form or by any means including electronic,

electrostatic, magnetic tape, mecharical, photocopying,
recording, or otherwise without the prior permission in

writing of the publisher.

For information, address State Univarsity of New York
Press, State University Plaza, Albany, N.Y, 12246

Production by Diane Ganeles
Marketing by Dana Yanulavich

Library of Congress Cataloging-in-Publication Data

Ethnomathematics challenging eurocentrism in mathematics education /
edited by Arthur B. Powell and Marilyn Frankenstein.
p- ¢m. — (SUNY series, reform in mathematics education)
Includes bibliographical references and index.
ISBN 0-7914-3351-X (ch : alk. paper). — ISBN 0-7914-3352.8 (pb :
alk. paper)
1. Ethnomathematics. 2. Mathematics—Study and teaching,
3. Eurocentrism. 1. Powell, Arthur B. 11, Frankenstein, Marilyn,
II. Series.
GN476.15.E85 1997
510".7—dc20 96-24925
CIp

10987654321



Contents

Acknowledgments

Foreword
U. D’Ambrosio

Introduction
A. B. Powell and M. Frankenstein

SECTION 1. ETHNOMATHEMATICAL KNOWLEDGE
A. B. Powell and M. Frankenstein

Chapter 1. Ethnomathematics and its Place in the History and
Pedagogy of Mathematics
U. D’Ambrosio

Chapter 2. Ethnomathematics
M. Ascher and R. Ascher

SEecTION II. UNCOVERING DISTORTED AND HIDDEN HISTORY
OF MATHEMATICAL KNOWLEDGE
A. B. Powell and M. Frankenstein

Chapter 3. Foundations of Eurocentrism in Mathematics
G. G. Joseph

Chapter 4. Animadversions on the Origins of Western Science
M. Bernal

Chapter 5. Africa in the Mainstream of Mathematics History
B. Lumpkin

XV

13

25

51

61

83

101



viii Contents

SeCTION III. CONSIDERING INTERACTIONS BETWEEN CULTURE
AND MATHEMATICAL XNOWLEDGE
A. B. Powell and M. Frankenstein 119

Chapter 6. The Myth of the Deprived Child: New Thoughts
on Poor Children

H. P. Ginsburg 129
Chapter 7. Mathematics and Social Interests

B. Martin 155
Chapter 8. Marx and Mathematics

D. J. Struik 173

SECTION IV. RECONSIDERING WHAT COUNTS AS
MATHEMATICAL KNOWLEDGE
A. B. Powell and M. Frankenstein 193

Chapter 9. Difference, Cognition, and Mathematics Education
V. Walkerdine 201

Chapter 10. An Example of Traditional Women’s Work as a
Mathematics Resource
M. Harris 215

Chapter 11. On Culture, Geometrical Thinking and
Mathematics Education
P. Gerdes 223

SECTION V. ETHNOMATHEMATICAL PRAXIS
IN THE CURRICULUM

A. B. Powell and M. Frankenstein 249
Chapter 12. Ethnomathematics and Education

M. Borba 261
Chapter 13. Mathematics, Culture, and Authority

M. Fasheh 273
Chapter 14. Worldmath Curriculum: Fighting Eurocentrism in

Mathematics

S. E. Anderson 291

Chapter 15. World Cultures in the Mathematics Class
C. Zaslavsky 307



Contents

SECTION VI. ETHNOMATHEMATICAL RESEARCH
A. B. Powell and M. Frankenstein

Chapter 16. Survey of Current Work in Ethnomathematics
P. Gerdes

Chapter 17. Applications in the Teaching of Mathematics and
the Sciences
R. Pinxten

Chapter 18. An Ethnomathematical Approach in Mathematical
Education: A Matter of Political Power
G. Knijnik

Afterword
G. Gilmer

Contributors
Index

321

331

373

403

411
419
431



Chapter 7

Mathematics and Social Interests

Brian Martin

Editors’s comment: Brian Martin, originally a theoretical physicist and
now working in science and technology studies, presents an overview
of how mathematical knowledge is not neutral and discusses the ways
in which mathematical knowledge is shaped by cultural influences.
This chapter first appeared in Search, 19(4): 209-214 in 1988.

Mathematics is a product of society and it can both reflect and
serve the interests of particular groups. The connection between
mathematics and interest groups can be examined by looking at the
social construction of mathematical knowledge and by looking at the
social system in which mathematics is created and used.

Scientists have long believed that scientific knowledge is knowl-
edge about objective reality. They commonly distinguish their enter-
prise from religious or political belief systems, seeing scientific truth
as unbiased. This belief system has always had difficulties with cer-
tain applications of science such as nuclear weapons. The usual way
in which the belief in the purity of science is maintained is by distin-
guishing between scientific knowledge and its applications. Scientific
knowledge is held to be pure while its applications can be for good or
evil. This is known as the use-abuse model.

This standard picture came under attack in the late 1960s and
early 1970s. Radical critics argued that science is inevitably shaped by
its social context. For example, funding of pesticide research by the
chemical industry arguably influences not only what research topics
are treated as important, but also what types of ecological models are
considered relevant for understanding agricultural systems. Many



156 B. Martin

critics argued that the key motive behind science is profit and social
control {Rose & Rose 1976a, b; Arditti et al. 1980).

The political critics of science drew on and stimulated dramatic
changes in the study of the history, philosophy, and sociology of
science. Thomas Kuhn (1970) opened the door with his concept of
paradigms, which are essentially frameworks of standard ideas and
practices within which most scientific research proceeds. When a
paradigm is overthrown in the course of a scientific revolution, the
criteria for developing and assessing scientific knowledge change.
The implication is that there is no overarching rational method to
decide what is valid knowledge: scientific knowledge depends, on
some level, on the vagaries of history and culture.

Sociologists studying scientific knowledge have developed and
filled out this picture. They have examined not only the large-scale
political and economic influences on scientific development but also
the micro-processes by which scientists “negotiate” what is scientific
knowledge (Barnes, 1974, 1977, 1982; Bloor, 1976; Latour and Woolgar,
1979, Mulkay, 1979; Knorr, et al. 1980).

Most of this analysis has been communicated using social science
jargon in specialist journals and has had relatively little impact on
practising scientists. The only philosopher of science taken note of by
many scientists is Karl Popper, and even his ideas are used more as a
“resource” in struggles over knowledge than as methodological aids
(Mulkay & Gilbert 1981). Nowhere is this more true than in mathe-
matics.

What does it mean to talk about the relationship between mathe-
matics and social interests? It can refer to the impact of social fac-
tors—such as sources of funding, possible applications or prevalent
beliefs in society—on the content and form of mathematical knowl-
edge, such as on the choice of areas to study, the formulation of
methods of proof and the choice of axioms. Alternatively, it can refer
to the role mathematics plays in applications, from actuarial work to
industrial engineering. Finally, it can refer to the social organization of
the production of mathematics: the training of mathematicians, pat-
terns of communication and authority in mathematical work, profes-
sionalisation, specialization and power relations.

“Interest” here refers to the stake of an individual or social group
in particular types of actions or social arrangements. An interest can
be small-scale, such as the personal advantage to a mathematician in
publishing a paper to gain tenure, or large-scale, such as the strategic
advantage to a military force in using an algorithm for tracking mis-
siles. “Social interests” are those associated with major social group-
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ings such as social classes, large organizations, occupational or ethnic
groups.

My aim here is to survey some ideas bearing on mathematics and
social interests. I approach the problem from two directions. The first
is via the sociology of knowledge. Can sociological examination be
applied to the creation and elaboration of mathematical knowledge?
What does it mean to talk of the social shaping of mathematics? There
are some provocative studies in this area, but in my view they do not
lead by themselves to a comprehensive picture which can be used to
evaluate the role of mathematical work in contemporary society.

The second path involves looking at the system of production
and application of mathematical knowledge, and in particular at the
use of expertise in modern society and at the relationship between
mathematical theory and application.

Path One: Sociology of Knowledge

The sociology of knowledge attempts to explain the origin and
evolution of knowledge using the same sorts of analysis which are
applied to other phenomena, both natural and social. The dynamics
of knowledge involve social, economic, political, religious, biological,
and all sorts of other factors. Rather than assuming that the content
and structure of knowledge is “given” by logic or the nature of real-
ity—a transcendental explanation of knowledge—the sociology of
knowledge looks for more mundane explanations.

David Bloor (1976) is a leading proponent of the “strong program
in the sociology of science,” which aims to investigate all knowledge
using sociological methods. The key features of the strong program
according to Bloor are that knowledge be explained in casual terms,
that explanations be impartial and symmetrical with respect to the
truth or falsity of the beliefs being explained, and that the theory be
applied to itself.

Bloor adopts an approach to mathematics based on improving
John Stuart Mill’s view that all mathematics is ultimately based on
physical models and human experiences, such as the manipulation of
pebbles which can be seen as a motivation for arithmetic with natural
numbers (Bloor 1976, Ch. 5). The traditional obstacles to Mill's view is
E L. G. Frege’s point that mathematics seems to be “objective”: math-
ematical reasoning has a compulsion about it which cannot always be
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attributed to a link with physical models. To extend Mill’s theory,
Bloor observes that Frege’s definition of objectivity is equivalent to
social convention: mathematicians have institutionalized a set of be-
liefs about the ways to proceed with the symbols they work with.
These institutionalized beliefs are rather like rules in a game: they
must be adhered to. Bloor’s extension of Mill's perspzactive is that
physical situations provide models for certain steps in mathematical
reasoning (usually the more basic features) while mathematical con-
vention gives an obligatory aspect to these steps and extensions of
them. Mathematics thus deals not with physical reality but with social
creations and conventions.

Bloor’s reconstruction of Mill's position provides a powerful
basis for the sociological investigation of mathematics. Since the “law-
like” features of mathematical reasoning are based on conventions,
then it is natural to investigate how these conventions are created,
sustained, and overturned.

Bloor investigates the history of mathematics to sce what hap-
pened to alternative conceptions of mathematics, dealing with issues
such as whether one is a number, Diophantine equations, and Pythag-
orean and Platonic numbers (Bloor 1976, ch. 6). His conclusion is that
alternative concepts did exist, but that historians have relegated them
to the historical rubbish bin of “non-mathematics.” In this way only
“genuine mathematics” remains part of the history of mathematics,
which thus seems to be cumulative and without significant deviations
or alternatives.

Bloor also examines the ways in which mathematical reasoning is
socially “negotiated,” namely, the practices through with mathemati-
cians develop agreed-upon ways of using and interpreting the sym-
bols and tools of their trade, including criticism, argumentation, re-
classification and consensus (Bloor 1976, ch. 7). Bloor gives among
other examples the case of the negotiation, over the years, of the
proof of the formula E + 2 = V + F relating the number of edges,
vertices, and faces of a polygonal solid.

Bloor’s program is a powerful one. It opens the foundations of
mathematics to sociological examination by allowing the “objectivity”
of mathematical reasoning to be seen as fundamentally social in na-
ture. But Bloor does not extend his analysis to address the relation
between mathematics and social interests. Even if it is accepted that
the formula E + 2 = V + F depends on somewhat arbitrary agree-
ments among mathematicians rather than being inherent in the nature
of polygonal solids (or the mathematical concepts of polygonal
sclids), that does not provide much insight into whether the social
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negotiation of the formula owes much or provides special benefits to
particular groups in society.

At this stage it is worthwhile to spell out the different channels
through which the form and content of mathematics can be shaped
by society. Social interests can be connected with the choice of areas
of mathematics to study, the interpretation of mathematics, and the
development of mathematical frameworks.

The Choice of Mathematical Areas to Study

Differential funding or the availability of applications can affect
the opening of branches of study and the prestige of different sub-
jects. For example, the field of operations research grew out of mili-
tary applications of mathematics during World War II and the
strength of the field is maintained by continuing military interest.

Luke Hodgkin (1976) argues that the great surge in the “mathe-
matics of computation,” which encompasses numerical analysis and
parts of computer science, is connected to the development of the
needs of contemporary capitalism plus the availability of suitable
technology for computing (such as transistors and now chips). He
points out that the mathematics of computation is not a simple “re-
flection” of the economic system, as a simplistic Marxist account
might suggest. Instead, the influence of the system of economic pro-
duction is mediated through the social institutions of science, whose
organization predated the great growth of computational mathe-
matics.

Choice in mathematical research is also involved at the detailed
level of application. Partial differential equations can be applied to
many problems; the particular sets of equations which are selected
out for formulation and solution can be influenced by applications,
which in turn are linked to social interests.

The Interpretation of Mathematics

In many cases, especially in applied mathematics, mathematical
constructions are chosen because they have desirable physical or so-
cial interpretations. An example here is Paul Forman's (1971) study of
the effect of Weimar culture on the development of quantum theory.
The most important strides in quantum theory occurred in Germany
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in the decade after World War I. Forman documents the intense an-
tagonism to rationality which prevailed then in the Weimar Republic.
Since causality was identified with rationality, physicists came under
pressure to renounce their traditional allegiance to causality. Forman
suggests that this pressure led the quantum physicists to search for, or
at least latch on to, a mathematical formalism which could be inter-
preted as non-casual. In crude terms, the acausal Copenhagen inter-
pretation and its associated mathematical framework were adopted
because they looked good publicly.

Forman'’s study is quite relevant to mathematics, sirice theoretical
physics constitutes the foremost application of mathematics. The case
of quantum theory is intriguing because, in the decades since the es-
tablishment of the orthodox or Copenhagen interpretation, a number
of alternative interpretations have been put forth. Some of these use
the same mathematical formulations, but interpret their physical sig-
nificance differently, while others use different mathematical formula-
tions to achieve the same results.

The statistical interpretation favored by Einstein uses the same math-
ematics (Ballentine 1970). . ..

The hidden variable interpretation, a determinist approach, formu-
lates the equations somewhat differently and, optionally, can give
different results from the orthodox theory by addition of an extra
parameter (Bohm 1952; Cushing 1994). . . .

The splitting universe interpretation is a different interpretation of
the same mathematics (DeWitt 1970). . . .

The “realist” interpretation, which gets rid of the indeterminist ele-
ment in quantum theory entirely, uses a different mathematical ap-
proach to achieve some of the same basic results (Landé 1965). . . .

The existence of these interpretations or reformulations of quan-
tum theory adds support to Forman’s analysis. At the least, the inter-
pretation of the equations of quantum theory as supporting indeter-
minism was not required by the equations themselves. Furthermore, it
seems possible that many of the achievements of the theory might
have been accomplished using a somewhat different mathematical
formulation, which could well have been difficult to interpret indeter-
ministically.

So strong was the commitment to indeterminism that physicists
accepted without question John von Neumann’s proof in the 1930s
that no hidden variable theory could be constructed. Although Bohm
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demonstrated such a theory in 1952, it was not until the 1960s that the
flaw in von Neumann's proof was exposed (Pinch 1977).

In my experience, most physicists do not worry greatly about
what quantum theory “means” but simply use mathematics in a prag-
matic fashion. Indeed, one of the “crisis points” commonly experi-
enced by physics students is when they give up their increasingly
uncomfortable attempts to understand what the theory really means
and instead just accept it, usually by sweeping their doubts under the
carpet. Most historians and textbook writers have accommodated this
process, as Bloor has argued about mathematics history, by exorcising
alternative interpretations as unsuccessful, irrelevant or nonexistent.

The Development of Mathematical Frameworks

The choice of axioms, the types of theorems, the style of proofs
and a host of other facets of mathematics can be shaped by factors
such as views about the nature of social reality.

An example here is game theory, a mathematical theory which
deals with conflict situations, originally developed to model economic
systems (Martin 1978). Key concepts of the theory include the “players”
in a game, each of which has a number of “choices,” followed by
“payoffs.” The mathematical theory of games is built around deter-
mining the optimal strategies for making choices. The players, choices
and payoffs are usually assumed to be fixed; competition is built in;
payoffs tend to be quantifiable. Hence, game theory is especially
suited for applications which assume and reinforce individualism and
competition.

Game theory has been applied in many areas, such as interna-
tional relations. What often happens in practice is that the values of
the modelers are incorporated into the game theoretic formulation,
which usually ensures that the game gives results which legitimate
those very same values. Game theory in this situation provides a
“mystifying filter”: values are built into an ostensibly value-free
mathematical framework, which thus provides “scientific” justifica-
tion for the decision desired. Arguably, game theory has become pop-
ular because its mathematical framework makes it easy to use in this
way.

The above-mentioned studies and others (Thomas 1972; Ogura
1974; Bos & Mehrtens 1977, MacKenzie 1978; Mehrtens 1987; for a
comprehensive survey and analysis see Restivo 1983) show how the
social context, such as economics or belief systems, can influence the
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areas of mathematics that are opened up and made fashionable, the
types of theories that are developed, and the particular mathematical
formalisms that are formulated and used. These are examples of the
impact of social factors on mathematical knowledge, but they hardly
establish that all mathematics is influenced in these sorts of ways. To
establish this would require many studies in the line of Bloor’s strong
program, in an attempt to whittle down the areas of apparent auton-
omy of mathematical knowledge. Only if the range of sociological
studies was very broad could the burden of proof be put on those
who claim that there are areas of mathematics free of such formative
influences.

Even if the strong program could be so developed, what would it
say about mathematics and social interests? The existence of influ-
ences on the creation and adoption of mathematical knowledge does
not automatically mean that knowledge preferentially serves particu-
lar groups in society.

The studies in the sociclogy of knowledge initiate the case that
mathematics is connected with social interests, by refuting the view
that mathematical knowledge always springs antiseptically from the
nature of logic, from physical reality or from mathematicians’ heads.
The limits of sociological examination of mathematics remain to be
tested. Some such as Bloor (1981) think the prospects are good while
others disagree (Laudan 1981). In any case, since most of the soci-
ology of knowledge studies deal with influences on the origin and
development of mathematical knowledge in earlier eras, they only
partially address concerns about the uses of present-day mathematics.
To pursue the case further, I turn to the second path.

Path Two: The Mathematics-Society System

This approach to looking at mathematics enters not at the level of
mathematical knowledge but at the level of the social systems in
which that knowledge is created and applied. The social system of
science refers to patterns of employment, funding, communication,
training, authority, decision making, and so forth. The aim here is to
look at the way systems of production and application of mathemat-
ics relate to social interests. To do this, I select out some salient fea-
tures of the social systems associated with mathematical expertise.



Mathematics and Social Interests 163
Sources of Patronage

Most of the money for mathematics research—which is largely
for salaries, but also for offices, libraries, computing and travel—
comes from governments and large corporations. The source of fund-
ing inevitable has an influence on the areas of mathematics studied
and the types of mathematical applications undertaken. As argued by
Hodgkin (1976), much of the stimulus for work in computational
mathematics also comes from actual or potential military applications.

At the detailed level of application, the formulation of mathe-
matical problems is strongly influenced by funding and opportunities
for application. In manufacturing industry, mathematical problems
grow out of the need to cut costs, improve technologies, or control
labor. A mathematical model for the rapid cooling of a metal bar
without cracking is tied to an immediate problem. The mathematics
of light transmission in optical fibres is driven by interest in applica-
tion in telecommunications. The number of examples is endless.

What happens in many cases is that a practical problem, such as
modeling air pollution dispersion or the trajectories of missiles, leads
to a more esoteric mathematical project in numerical analysis or dif-
ferential equations. The applications, and thus the funding, in these
cases have an indirect influence on the type of mathematical problems
studied and thought to be “interesting.” That particular types of para-
bolic partial differential equations become whole fields of study in
themselves is not due simply to some abstract mathematical signifi-
cance of these equations, but to their significance in practical applica-
tions, even if at several stages removed.

Professionalization

Today, most mathematicians—taking a mathematician to be a
person who creates or applies mathematical knowledge at a high
level—are full-time professionals, working for universities, cor-
porations or governments. There are few amateurs, nor do many
mathematicians work for trade unions, as farmers, in churches, or as
freelancers. Mathematics, like the rest of science, has been profession-
alized and bureaucratized. The social organization of mathematics in-
fluences the ways that ambitious mathematicians can pursue fame
and fortune (Collins & Restivo 1983)

Mathematicians have a vested interest in their salaries, their con-
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ditions of work, their occupational status, and their self-image as pro-
fessionals. Their preferences for types and styles of mathematics are
influenced by these factors.

Judith Grabiner (1974) argues that there have been “revolutions
in thought which changed mathematicians’ views about the nature of
mathematical truth, and about what could or should be proved.”
Grabiner examines one particular revolution, the switch from the
1700s when the main aim of mathematicians was to obtain results to
the 1800s when mathematical rigor became very important. Of the
various reasons for this which Grabiner canvasses, one is worth not-
ing here. Only since the beginning of the 1800s have the majority of
mathematicians made their living by teaching. Rather than just ob-
taining mathematical results for applications or to impress patrons,
teachers need to provide a systematic basis for the subject, to aid stu-
dents but also to establish a suitable basis for demarcating the profes-
sion and excluding self-taught competitors from jobs. This is an exam-
ple of how the social organization of the profession of mathematics
can affect views about the nature of mathematical truth.

Gert Schubring (1981) has argued that in the professionalization
of mathematics in Prussia in the early 1800s, the “meta-conception” of
pure mathematics played an important role. By defining “mathemat-
ics” as separate from externally defined objectives, the mathemati-
cians oriented the discipline to internal values that they could control.
To do this, support from the state had to be available first. Given state
patronage for academic positions, the mathematicians could proceed
to establish a discipline by establishing training which channelled stu-
dents into the new professional orientation, reducing the number of
self-taught mathematicians obtaining jobs in the field ar.d socializing
students into the meta-conception of pure mathematics. This account
meshes nicely with that of Grabiner.

This process continues today. Especially in universit:es, the home
grounds of pure mathematics, mathematicians stake their claims to
autonomy and resources on their exclusive rights, as experts, to judge
research in mathematics. This is no different from the claims of many
other disciplines and professions (Larson 1977). The point is that if
mathematicians emphasized application as their primarv value, their
claims to status and social resources would be dependent on the
value of the application. The conception of “pure” mathematics en-
ables an exclusive claim to control over the discipline to be made.

Herbert Mehrtens (1987, p. 160) develops the thesis that “a scien-
tific discipline exchanges its knowledge products plus political loyalty
in return for material resources plus social legitimacy.” He shows
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how German mathematicians in the 1930s were able to accommodate
the imperatives of the Nazis, especially by providing useful tools to
the state. The adaptability of the German mathematics community
grew out of its social differentiation, specifically the different functions
of teaching, pure research, and applied research. Mehrtens’ study pro-
vides an excellent model for analyzing the interactive dynamics of the
two factors of patronage and the structure of the profession.

Male Domination

Most mathematicians are men, and mathematics like the rest of
natural science is seen as masculine: a subject for those who are ratio-
nal, emotionally detached, instrumental, and competitive. Mathemati-
cians are commonly thought, especially by themselves, to have an
innate aptitude for mathematics, and claims continue to be made that
males are biologically more capable of mathematical thought than fe-
males. The teaching of pure mathematics as concepts and techniques
separated from human concerns, plus the male-dominated atmo-
sphere of most mathematics research groups, make a career in mathe-
matics less attractive for those more oriented to immediate human
concerns, especially women.

Male domination of mathematics is linked with male domination
of the dominant social institutions with which professional mathe-
matical work is tied, most notably the state and the economic system,
through state and corporate funding and through professional and
personal contacts (Bowling & Martin 1985).

The high status of mathematics as a discipline may be attributed
in part to its image as a masculine area. Mathematical models gain
added credibility through the image of mathematics as rational and
objective—characteristics associated with masculinity—as opposed to
models of reality that are seen as subjective and value-laden.

Specialization

There are various ways in which mathematicians shape and use
their expert knowledge to promote their interests vis-a-vis other so-
cial groups. If mathematical knowledge was too easy to understand
by others—both non-mathematicians and other mathematicians—the
claims by mathematicians for social resources and privilege would be
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harder to sustain. Specialization enables enclaves of expertise to be
established, preventing scrutiny by outsiders. In applications work,
specialization ensures that only particular groups are served. In all
cases, specialization plus devices such as jargon prevent ready over-
sight by anybody other than other specialists. Since hiring profes-
sionals to understand specialist bodies of knowledge car. be afforded
on a large scale only by governments and large corporations, special-
ization serves their interests more than those of the disabled or the
unemployed, for example.

The role of these factors is particularly obvious in mathematical
modeling. A mathematical model may be a set of equations, which is
thought to correspond to certain aspects of reality. For example, most
of theoretical physics, such as elementary theory for projectiles or
springs, can be considered to consist of mathematical models. In most
parts of physics, the models are considered well established, and
physicists work by manipulating or adapting the existing models. But
in other areas the choice of models is open. Various parts of reality
may be chosen as significant, and various mathematical {ools may be
brought to bear in the modeling process.

Many people who have been involved in mathematical modeling
will realize the great opportunities for building the values of the mod-
eler into the model. I have seen this process at work in a variety of
areas, including mathematical ecology, game theory, stratospheric
chemistry and dynamics, voting theory, wind power, and econometrics.

A good example is the systems of difference equations used in
the early 1970s to determine the “limits to growth.” The choice of
equations and parameters more or less ensured that glotal instability
would result (Cole et al., 1973). When different assumptions were
used by different modelers, different results—for example, that pro-
motion of global social equality would prevent global breakdown—
were obtained, nicely compatible with the values of the modelers.
Another example is the values built into global energv projections
developed at the International Institute for Applied Systems Analysis
(Keepin & Wynne 1984).

Mathematical models are socially significant in two principal
ways: as practical applications of mathematics and as legitimations of
policies or practices. Most models are closely tied to practical applica-
tions, such as in industry. The narrow specialization involved in the
modeling ensures that few other than those developing or funding
the application would be interested in or capable of using the model.
This sort of applied mathematics is closely linked to the social inter-
ests making the specific application. Whether the application is tele-
communications satellites, anti-personnel weapons or solar house de-
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sign, one may judge the mathematics by the same criteria used to
judge that application. It is not adequate to say that the killer is guilty
while the murder weapon is innocent, for in these sorts of applica-
tions the mathematical “weapon” is especially tailored for its job. Cer-
tainly applied mathematicians cannot escape responsibility for their
work by referring to “neutral tools,” whether this refers to their math-
ematical constructions or to themselves.

Models serving as legitimations are involved in a more compli-
cated dynamic. In many cases such as limits-to-growth studies the
models do no more than mathematicise a conclusion which would be
obvious without the model. But the models are seen as important
precisely because they are mathematical, thus drawing on the image
of mathematics as objective. A mathematics-based claim also has the
advantage of being the work of professionals. Anyone can make a
claim, but if a scientist does so, relying on the allegedly objective tools
of mathematics, that is much more influential. Although exercises in
mathematical modeling are often shot through with biases, for public
consumption this often is overlooked; the modelers draw on an aura
of objectivity which is sustained by the more esoteric researches of
pure mathematicians.

What then of pure mathematics? There are two major ways in
which a link to social interests can be made. First is potential applica-
tions. These are not always easy to assess, but a good guess often can
be obtained by looking at actual applications in the same or related
specialities. If any new application turns up, it is likely to be in the
same areas and to be used by the same groups.

It is a debatable point whether mathematics should ever be eval-
uated separately from applications. Arguably, the study of nature is
the primary motivation for the development of and importance of
mathematics, and the “correctness” of pure mathematics should be
judged by its ultimate applicability to the physical world (Kline 1959,
1980). The primary reason for the ascension of pure mathematics,
namely, mathematics which is isolated from application, is the social
system of modern science.

This system—including funding, professionalization, male domi-
nation and specialization—in which claims to sole authority over
areas of knowledge are used to claim resources, is the second way
that pure mathematics is connected with social interests. Even if some
bit of pure mathematical research turns out to have no application, it
is still usually the case that social resources have been expended to
support professional workers who are mostly male and who produce
intellectual results of interest only to a handful of others like them-
selves. Furthermore, the work of pure mathematicians, and indeed



168 B. Martin

their very existence, helps legitimate the claims of mathematics to ob-
jectivity.

Conclusions

The question, “What is the link between mathematics and social
interests?”, is usually answered in advance by assumptions about
what mathematics really is. If mathematics is taken to be that body of
mathematical knowledge which sits above or outside of human inter-
ests, then by definition social interests can only be involved in the
practice of mathematics, not in mathematics This Platonic-like concep-
tion sees mathematics as value-free, but is itself a value-laden concep-
tion: it serves to deflect attention from the many links between mathe-
matics and society.

Most people would agree that nuclear weapons have not been
constructed to serve all people equally; particular social interests are
involved in designing, building, testing, and deploying nuclear weap-
ons. But what of the uranium, plutonium, iron, and other atoms con-
tained in nuclear weapons? Are these atoms “value-laden?” A reason-
able stance in my view is that the atoms in themselves arz not linked
to any particular groups—except the plutonium atoms which were
manufactured by humans—but that the connection enters through
the humanly constructed configuration of atoms. The idea of a value-
free atom in isolation is all very well, but that is not what we encoun-
ter in human constructions.

Elements of mathematical knowledge can be likened to atoms,
except that all mathematical concepts have been created by humans.
In isolation, the mathematical concepts of an integral or a ring seem
not to be associated with the interests of particular grougs in society.
But mathematical concepts do not exist in isolation. They are orga-
nized together for particular purposes, very narrowly for detailed
applications, more generally for teaching. The more specialized and
advanced ideas are mostly restricted to a small segment of the popu-
lation, which claims social resources and status due to its expertise.

The belief that mathematics is a body of truth independent of
society is deeply embedded in education and research. Ttis situation,
by hiding the social role of mathematics behind a screen of objectivity,
serves those groups which preferentially benefit from the present so-
cial system of mathematics. Exposing the links between mathematics
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and social interests should not be seen as a threat to “mathematics”
but rather as a threat to the groups that reap without scrutiny the
greatest material and ideological benefits from an allegedly value-free
mathematics.
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